Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

A mathematical analysis of electrical discharges


Authors: Francois Severin and Anne Nouri
Journal: Quart. Appl. Math. 60 (2002), 131-152
MSC: Primary 35Q05; Secondary 35B30, 35K40, 35K55, 76X05, 82D10
DOI: https://doi.org/10.1090/qam/1878263
MathSciNet review: MR1878263
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The study of systems arising in electrical discharges, via fluid models for charged and neutral particles is performed. Existence and uniqueness of the solution, locally in time, is proven for the drift-diffusion-Poisson system coupled with the isothermal Euler system, in a bounded domain, with the momentum prescribed on the boundary.


References [Enhancements On Off] (What's this?)

  • [1] J.-P. Boeuf and A. Merad, Fluid and Hybrid Models of Non-Equilibrium Discharges, Plasma Processing of Semiconductors, NATO ASI Series E: Applied Sciences, Vol. 336, Ed. P. F. Williams, Kluwer Academic Publisher, 1997, pp. 291-320
  • [2] W. S. Boyle, P. Kisliuk, and L. H. Germer, Electrical breakdown in high vacuum, J. Appl. Phys. 26, 720-725 (1955)
  • [3] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
  • [4] Carlo Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, New York, 1988. MR 1313028
  • [5] F. Chen, Plasma Physics and Controlled Fusion, Plenum Publishing Corporation, Second Edition, 1984
  • [6] M. Cho and D. E. Hastings, Dielectric charging process and arcing rate of high voltage solar arrays, J. Spacecraft and Rockets 28, 698-706 (1990)
  • [7] P. Degond and B. Lucquin, Transport coefficient of plasmas and disparate mass binary gases, Math. Models Methods Appl. Sci. 6, 405-436 (1996)
  • [8] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • [9] P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 0213864, https://doi.org/10.1007/BF00281421
  • [10] D. E. Hastings, M. Cho, and H. Kuninaka, Arcing rates for high voltage solar arrays: Theory, experiment and prediction, J. Spacecraft and Rockets, 538-554 (1992)
  • [11] I. Katz and D. B. Snyder, Mechanism for spacecraft charging, initiated destruction of solar arrays in GEO, AIAA, 98-1002, 36th Aerospace Sciences Meeting and Exhibit, Reno, NV, 1998
  • [12] J. L. Lions and E. Magenes, Problèmes aux Limites non Homogenes, Volumes 1 and 2, Dunod, 1968
  • [13] Ta Tsien Li and Wen Ci Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics Series, V, Duke University, Mathematics Department, Durham, NC, 1985. MR 823237
  • [14] J. P. Marque, Phenomenology of e-irradiated polymer breakdown, Vacuum, 39, no. 5, 443-452 (1989)
  • [15] D. Payan, Modèlisation des fils flottants; caractérisation des décharges électrostatiques de l'âme d'un fil, Internal note, CNES NT-I-93-11079/ACE, 1993
  • [16] Y. Raizer, Gas Discharge Physics, Springer-Verlag, New York, 1991
  • [17] Thomas I. Seidman and Giovanni M. Troianiello, Time-dependent solutions of a nonlinear system arising in semiconductor theory, Nonlinear Anal. 9 (1985), no. 11, 1137–1157. MR 813649, https://doi.org/10.1016/0362-546X(85)90026-4
    Thomas I. Seidman, Time-dependent solutions of a nonlinear system arising in semiconductor theory. II. Boundedness and periodicity, Nonlinear Anal. 10 (1986), no. 5, 491–502. MR 839361, https://doi.org/10.1016/0362-546X(86)90054-4
  • [18] Thomas I. Seidman and Giovanni M. Troianiello, Time-dependent solutions of a nonlinear system arising in semiconductor theory, Nonlinear Anal. 9 (1985), no. 11, 1137–1157. MR 813649, https://doi.org/10.1016/0362-546X(85)90026-4
    Thomas I. Seidman, Time-dependent solutions of a nonlinear system arising in semiconductor theory. II. Boundedness and periodicity, Nonlinear Anal. 10 (1986), no. 5, 491–502. MR 839361, https://doi.org/10.1016/0362-546X(86)90054-4
  • [19] F. Severin, Etude théorique et simulation numérique de décharge électrique dans le vide, Ph.D., ENPC, France, 1998
  • [20] F. Severin and J. P. Marque, Numerical simulation of an electrical discharge in vacuum, preprint, 1999

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q05, 35B30, 35K40, 35K55, 76X05, 82D10

Retrieve articles in all journals with MSC: 35Q05, 35B30, 35K40, 35K55, 76X05, 82D10


Additional Information

DOI: https://doi.org/10.1090/qam/1878263
Article copyright: © Copyright 2002 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website