Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Global solvability of a dissipative Frémond model for shape memory alloys. II. Existence

Author: Elena Bonetti
Journal: Quart. Appl. Math. 62 (2004), 53-76
MSC: Primary 74N99; Secondary 35K85, 35Q72, 74H15, 74H20
DOI: https://doi.org/10.1090/qam/2032572
MathSciNet review: MR2032572
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper investigates an initial and boundary values problem which is derived from a dissipative Frémond model for shape memory alloys. Existence of a global solution for the abstract version of the evolution problem is proved by use of a semi-implicit time discretization scheme combined with an a priori estimates-passage to the limit procedure.

References [Enhancements On Off] (What's this?)

  • [1] S. Aizicovici, P. Colli, and M. Grasselli, Doubly nonlinear evolution equations with memory, Funkcial. Ekvac. 44, 19-51 (2001) MR 1847835
  • [2] C. Baiocchi, Sulle equazioni differenziali astratte del primo e del secondo ordine negli spazi di Hilbert, Ann. Mat. Pura Appl. 76(4), 233-304 (1967) MR 0223697
  • [3] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976 MR 0390843
  • [4] H. Brézis, Opérateurs maximaux monotones et semi-groups de contractions dans les espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973
  • [5] E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. Part I: mathematical formulation and uniqueness, Quart. Appl. Math. 61(4), 759-781 (2003) MR 2019622
  • [6] E. Bonetti, Global solution to a Frémond model for shape memory alloys with thermal memory, Nonlinear Anal. 46, 535-565 (2001) MR 1856593
  • [7] N. Chemetov, Uniqueness results for the full Frémond model of shape memory alloys, Z. Anal. Anwendungen 17, 877-892 (1998) MR 1669913
  • [8] P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys, Nonlinear Anal. 24, 1565-1579 (1995) MR 1328584
  • [9] P. Colli, M. Frémond, and A. Visintin, Thermo-mechanical evolution of shape memory alloys, Quart. Appl. Math. 48, 31-47 (1990) MR 1040232
  • [10] M. Frémond, Matériaux a mémoire de forme, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers. Sci. Terre. 304, 239-244 (1987)
  • [11] M. Frémond, Shape memory alloys. A thermomechanical model, in: Free Boundary Problems: Theory and applications, vol. I-II (K. H. Hoffmann and J. Sprekels, eds.), Pitman Res. Notes Math. Ser. 185, Longman, London, 1990
  • [12] M. Frémond, Non smooth thermo-mechanics, Springer-Verlag, 2001
  • [13] M. Frémond and S. Miyazaki, Shape memory alloys, in: CISM Courses and Lectures No. 351, Springer-Verlag, New York, 1996
  • [14] J. W. Jerome, Approximation of nonlinear evolution systems, in: Ser. Math. in Sci. and Eng., 164, Academic Press, 1983 MR 690582
  • [15] J. Simon, Compact sets in the space $ {L^p}\left( 0, T; B \right)$, Ann. Mat. Pura Appl. 146(4), 65-96 (1987) MR 916688
  • [16] J. Sprekels, Shape memory alloys: mathematical models for a class of first order solid-solid phase transitions in metals, Control Cybernet. 19, 287-308 (1990) MR 1118688

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 74N99, 35K85, 35Q72, 74H15, 74H20

Retrieve articles in all journals with MSC: 74N99, 35K85, 35Q72, 74H15, 74H20

Additional Information

DOI: https://doi.org/10.1090/qam/2032572
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society