Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Shrinking similar solutions of a convection diffusion equation


Authors: Jingxue Yin and Chunpeng Wang
Journal: Quart. Appl. Math. 62 (2004), 259-272
MSC: Primary 35K57; Secondary 35C05, 35K15, 76M55, 76S05
DOI: https://doi.org/10.1090/qam/2054599
MathSciNet review: MR2054599
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the convection diffusion equation

$\displaystyle \frac{{\partial u}}{{\partial t}} = \Delta {u^m} - x \cdot \nabla {u^q}, \qquad (x, t) \in {\mathbb{R}{^n}} \times (0, + \infty )$

, where $ m > 1, 1 < q \le m$.

References [Enhancements On Off] (What's this?)

  • [1] A. S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations, Russian Math. Surveys, 42(2)(1987), 169-222. MR 898624
  • [2] A. Shishkov, Instantaneous shrinking phenomenon for solutions of higher-dimensional nonlinear diffusion-convection equations, Methods Funct. Anal., Topology, 5(3)(1999), 54-76. MR 1771546
  • [3] U. G. Abdullaev, Instantaneous shrinking and exact local estimations of solutions in nonlinear diffusion absorption, Adv. Math. Sci. Appl., 8(1)(1998), 483-503. MR 1623323
  • [4] B. H. Gilding and R. Kersner, Instantaneous shrinking in nonlinear diffusion-convection, Proc. Amer. Math. Soc., 109(2)(1990), 385-394. MR 1007496

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35K57, 35C05, 35K15, 76M55, 76S05

Retrieve articles in all journals with MSC: 35K57, 35C05, 35K15, 76M55, 76S05


Additional Information

DOI: https://doi.org/10.1090/qam/2054599
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society