Asymptotic behavior and strong convergence for hyperbolic systems of conservation laws with damping

Authors:
Corrado Lattanzio and Bruno Rubino

Journal:
Quart. Appl. Math. **62** (2004), 529-540

MSC:
Primary 35L65; Secondary 35B40, 35L40, 76N99, 76S05

DOI:
https://doi.org/10.1090/qam/2086044

MathSciNet review:
MR2086044

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A *local* type estimate will be proved here for general hyperbolic systems of conservation laws with strong dissipative term. Following the idea of [15], this result will be achieved by using as a preliminary step the convergence *in the mean*, which is an immediate consequence of the result of [11] obtained by using the compensated compactness theory.

**[1]**R. J. DiPerna. Convergence of approximate solutions to conservation laws.*Arch. Rational Mech. Anal*., 82:27-70, 1983. MR**684413****[2]**L. Hsiao and T.-P. Liu. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping.*Comm. Math. Physics*, 143:599-605, 1992. MR**1145602****[3]**L. Hsiao and T. Luo. Nonlinear diffusive phenomena of entropy weak solutions for a system of quasilinear hyperbolic conservation laws with damping.*Quart. Appl. Math*., 56:173-189, 1998. MR**1604829****[4]**F. Huang and R. Pan. Convergence rate for compressible Euler equations with damping and vacuum.*Arch. Rational Mech. Anal*., 166:359-376, 2003. MR**1961445****[5]**C. Lattanzio. On the bipolar isentropic Euler-Poisson model for semiconductors and the driftdiffusion limit.*Math. Models Methods Appl. Sci*., 10:351-360, 2000. MR**1753116****[6]**C. Lattanzio and P. Marcati. The relaxation to the drift-diffusion system for the isentropic Euler-Poisson model for semiconductors.*Discrete Contin. Dynam. Systems*, 5(2):449-455, 1999. MR**1665756****[7]**P. L. Lions and G. Toscani. Diffusive limit for finite velocity Boltzmann kinetic models.*Rev. Mat. Iberoamericana*, 13:473-513, 1997. MR**1617393****[8]**P. Marcati and A. Milani. The one-dimensional Darcy's law as the limit of a compressible Euler flow.*J. Differential Equations*, 84:129-147, 1990. MR**1042662****[9]**P. Marcati, A. Milani, and P. Secchi. Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system.*Manuscripta Math*., 60:49-69, 1988. MR**920759****[10]**P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation.*Arch. Rational Mech. Anal*., 129:129-145, 1995. MR**1328473****[11]**P. Marcati and B. Rubino. Hyperbolic to parabolic relaxation theory for quasilinear first order systems.*J. Differential Equations*, 162:359-399, 2000. MR**1751710****[12]**F. Murat. Compacité par compensation.*Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 5:489-507, 1978. MR**506997****[13]**B. Rubino. Porous media flow as the limit of a nonstrictly hyperbolic system of conservation laws.*Comm. Partial Differential Equations*, 21:1-21, 1996. MR**1373762****[14]**B. Rubino. Weak solutions to quasilinear wave equations of Klein-Gordon or sine-Gordon type and relaxation to the reaction-diffusion equations.*NoDEA Nonlinear Differential Equations Appl*., 4:439-457, 1997. MR**1485731****[15]**D. Serre and L. Xsiao. Asymptotic behavior of large weak entropy solutions of the damped -system.*J. Partial Diff. Eqs*., 10:355-368, 1997. MR**1486716****[16]**L. Tartar.*Compensated compactness and applications to partial differential equations*, volume IV of*Nonlinear Analysis and Mechanics: Heriot-Watt Symposium*, pages 136-212. Res. Notes in Math. 39, Pitman, 1979. MR**584398**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L65,
35B40,
35L40,
76N99,
76S05

Retrieve articles in all journals with MSC: 35L65, 35B40, 35L40, 76N99, 76S05

Additional Information

DOI:
https://doi.org/10.1090/qam/2086044

Article copyright:
© Copyright 2004
American Mathematical Society