Quenching for a degenerate parabolic problem due to a concentrated nonlinear source

Authors:
C. Y. Chan and X. O. Jiang

Journal:
Quart. Appl. Math. **62** (2004), 553-568

MSC:
Primary 35K60; Secondary 35K57, 35K65

DOI:
https://doi.org/10.1090/qam/2086046

MathSciNet review:
MR2086046

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let , , , and be any real numbers such that , , , and . This article studies the following degenerate semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source situated at :

**[1]**C. Y. Chan and W. Y. Chan,*Existence of classical solutions for degenerate semilinear parabolic problems*, Appl. Math. Comput.**101**(1999), no. 2-3, 125–149. MR**1678117**, https://doi.org/10.1016/S0096-3003(98)10002-4**[2]**C. Y. Chan and Hans G. Kaper,*Quenching for semilinear singular parabolic problems*, SIAM J. Math. Anal.**20**(1989), no. 3, 558–566. MR**990863**, https://doi.org/10.1137/0520039**[3]**C. Y. Chan and P. C. Kong,*Quenching for degenerate semilinear parabolic equations*, Appl. Anal.**54**(1994), no. 1-2, 17–25. MR**1382204**, https://doi.org/10.1080/00036819408840265**[4]**C. Y. Chan and P. C. Kong,*Channel flow of a viscous fluid in the boundary layer*, Quart. Appl. Math.**55**(1997), no. 1, 51–56. MR**1433751**, https://doi.org/10.1090/qam/1433751**[5]**C. Y. Chan and H. T. Liu,*Does quenching for degenerate parabolic equations occur at the boundaries?*, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.**8**(2001), no. 1, 121–128. Advances in quenching. MR**1820670****[6]**C. Y. Chan and H. Y. Tian,*Single-point blow-up for a degenerate parabolic problem due to a concentrated nonlinear source*, Quart. Appl. Math.**61**(2003), no. 2, 363–385. MR**1976376**, https://doi.org/10.1090/qam/1976376**[7]**Keng Deng and Catherine A. Roberts,*Quenching for a diffusive equation with a concentrated singularity*, Differential Integral Equations**10**(1997), no. 2, 369–379. MR**1424817****[8]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[9]**Karl E. Gustafson,*Introduction to partial differential equations and Hilbert space methods*, 2nd ed., John Wiley & Sons, Inc., New York, 1987. MR**881383****[10]**H. L. Royden,*Real analysis*, 3rd ed., Macmillan Publishing Company, New York, 1988. MR**1013117****[11]**Karl R. Stromberg,*Introduction to classical real analysis*, Wadsworth International, Belmont, Calif., 1981. Wadsworth International Mathematics Series. MR**604364****[12]**G. N. Watson,*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35K60,
35K57,
35K65

Retrieve articles in all journals with MSC: 35K60, 35K57, 35K65

Additional Information

DOI:
https://doi.org/10.1090/qam/2086046

Article copyright:
© Copyright 2004
American Mathematical Society