Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



A geometric approach to the extended D'Alembert principle of Udwadia-Kalaba-Hee-Chang

Authors: Jorge E. Solomin and Marcela Zuccalli
Journal: Quart. Appl. Math. 63 (2005), 269-275
MSC (2000): Primary 70F25; Secondary 70H45, 70G45
DOI: https://doi.org/10.1090/S0033-569X-05-00944-7
Published electronically: April 7, 2005
MathSciNet review: 2150773
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The extended D'Alembert Principle introduced by Udwadia, Kalaba, and Hee-Chang (1997) is analyzed in the framework developed by Vershik and Fadeev (1981) and shown to be equivalent to the general version of the Principle of virtual work presented therein.

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnol′d, Mathematical methods of classical mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295
  • 2. Dynamical systems. III, 2nd ed., Encyclopaedia of Mathematical Sciences, vol. 3, Springer-Verlag, Berlin, 1993. Mathematical aspects of classical and celestial mechanics; A translation of Current problems in mathematics. Fundamental directions, Vol. 3 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985 [ MR0833508 (87i:58151)]; Translation by A. Iacob; Translation edited by V. I. Arnol′d. MR 1292465
    V. I. Arnol′d, V. V. Kozlov, and A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Dynamical systems, III, Encyclopaedia Math. Sci., vol. 3, Springer, Berlin, 1993, pp. vii–xiv and 1–291. MR 1292466, https://doi.org/10.1007/978-3-540-48926-9_1
  • 3. P. Appell, Traité de Méchanique Rationelle (troisième édition). Gauthier-Villars, 1911.
  • 4. H. Goldstein, Ch. Poole, J. Safko, Classical Mechanics (third edition). Addison-Wesley, 2002.
  • 5. Ju.I Neimark, N.A. Fufaev, Dynamics of Nonholonomic Systems. AMS Translations of Mathematical Monographs, Vol. 33, 1972.
  • 6. Firdaus E. Udwadia, Robert E. Kalaba, and Hee-Chang Eun, Equations of motion for constrained mechanical systems and the extended d’Alembert’s principle, Quart. Appl. Math. 55 (1997), no. 2, 321–331. MR 1447580, https://doi.org/10.1090/qam/1447580
  • 7. A.M. Vershik, Fadeev L., Lagrangian mechanics in invariant form, Selecta Math. Soviet. (1), 339-350 (1981).
  • 8. E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, 1904.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 70F25, 70H45, 70G45

Retrieve articles in all journals with MSC (2000): 70F25, 70H45, 70G45

Additional Information

Jorge E. Solomin
Affiliation: Universidad Nacional de La Plata, Departamento de Matemática, CC 172, 1900 La Plata, Argentina

Marcela Zuccalli
Affiliation: Universidad Nacional de La Plata, Departamento de Matemática, Calle 50 esq 115, 1900 La Plata, Argentina

DOI: https://doi.org/10.1090/S0033-569X-05-00944-7
Received by editor(s): April 8, 2003
Published electronically: April 7, 2005
Article copyright: © Copyright 2005 Brown University

Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website