Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Stability estimates of the Boltzmann equation in a half space

Authors: Myeongju Chae and Seung-Yeal Ha
Journal: Quart. Appl. Math. 65 (2007), 653-682
MSC (2000): Primary 35Q35
DOI: https://doi.org/10.1090/S0033-569X-07-01060-4
Published electronically: August 24, 2007
MathSciNet review: 2370355
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the large-time behavior and the stability of continuous mild solutions to the Boltzmann equation in a half space. For this, we introduce two nonlinear functionals measuring future binary collisions and $ L^1$-distance. Through the time-decay estimates of these functionals and the pointwise estimate of the gain part of the collision operator, we show that continuous mild solutions approach to collision free flows time-asymptotically in $ L^1$, and $ L^1$-distance at time $ t$ is uniformly bounded by that of corresponding initial data, when initial datum is a small perturbation of the vacuum.

References [Enhancements On Off] (What's this?)

  • 1. Arkeryd, L., Cercignani, C.: A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal. Arch. Rational Mech. Anal. 125 (1993) 271-288. MR 1245073 (94j:82059)
  • 2. Arkeryd, L., Cercignani, C., Illner, R.: Measure solutions of the steady Boltzmann equation in a slab. Commun. Math. Phys. 142 (1991) 285-296. MR 1137065 (92m:82109)
  • 3. Arkeryd, L., Maslova, N.: On diffusive reflection at the boundary for the Boltzmann equation and related equations. J. Stat. Phys. 77 (1994), 1051-1077. MR 1301931 (95i:82080)
  • 4. Asano, K.: Local solutions to the initial and initial boundary value problem for the Boltzmann equation with an external force I. J. Math. Kyoto Univ. 24 (1984) 225-228. MR 751698 (86a:45011)
  • 5. Bellomo, N., Palczewski. A., Toscani, G.: Mathematical topics in nonlinear kinetic theory. World Scientific Publishing Co., Singapore, 1988. MR 996631 (90m:82030)
  • 6. Blouza, A., Le Dret, H.: An up-to-boundary version of Friedrichs's lemma and applications to the linear Koiter shell model. SIAM J. Math. Anal. 33 (2001) 877-895. MR 1884727 (2003a:35185)
  • 7. Bellomo, N., Toscani, G.: On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic behavior. J. Math. Phys. 26 (1985) 334-338. MR 776503 (86h:82038)
  • 8. Cercignani, C., Illner, R.: Global weak solutions of the Boltzmann equation in a slab with diffusive bounary conditions. Arch. Rationa Mech. Anal. 134 (1996), 1-16. MR 1392307 (97k:82037)
  • 9. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences 106, Springer-Verlag, New York 1994. MR 1307620 (96g:82046)
  • 10. DiPerna, R., Lions, P.L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann Math. 130 (1989) 321-366. MR 1014927 (90k:82045)
  • 11. Glikson, A.: On the existence of general solutions of the initial-value problem for the nonlinear Boltzmann equation with a cut-off. Arch. Rational Mech. Anal. 45 (1972) 35-46. MR 0337235 (49:2006a)
  • 12. Guiraud, J.P.: An $ H$-theorem for a gas of rigid spheres in a bounded domain. Colloq. Int. CNRS, 236 (1975), 29-58. MR 0449410 (56:7713)
  • 13. Ha, S.-Y.: $ L^1$ stability of the Boltzmann equation for Maxwellian molecules. Nonlinearity. 18 (2005) 981-1001. MR 2134080 (2006b:82106)
  • 14. Ha, S.-Y.: Nonlinear functionals of the Boltzmann equation and uniform stability estimates. J. Differential Equations 215 (2005) 178-205. MR 2146347 (2006b:35033)
  • 15. Hamdache, K.: Initial-boundary value problems for the Boltzmann equation: Global existence of weak solutions. Arch. Rational Mech. Anal. 119 (1992) 309-353. MR 1179690 (93g:35132)
  • 16. Hamdache, K.: Problemes aux limites pour l'equation de Boltzmann: Existence globale de solutions. Comm. PDE 13 (1988) 813-845. MR 940959 (89f:45016)
  • 17. Hamdache, K.: Existence in the large and asymptotic behavior for the Boltzmann equation. Japan. J. Appl. Math. 2 (1984) 1-15. MR 839316 (87j:35322)
  • 18. Illner, R., Shinbrot, M.: Global existence for a rare gas in an infinite vacuum. Commun. Math. Phys. 95 (1984) 217-226. MR 760333 (86a:82019)
  • 19. Kaniel, S., Shinbrot, M.: The Boltzmann equation 1: Uniqueness and local existence. Commun. Math. Phys. 58 (1978) 65-84. MR 0475532 (57:15133)
  • 20. Lu, X. : Spatial decay solutions of the Boltzmann equation: converse properties of long time limiting behavior. SIAM J. Math. Anal. 30 (1999) 1151-1174. MR 1709791 (2000k:35274)
  • 21. Mischler, S., Perthame, B.: Boltzmann equation with infinite energy: renormalized solutions and distributional solutions for small initial data and initial data close to a Maxwellian. SIAM J. Math. Anal. 28 (1997) 1015-1027. MR 1466666 (98g:35197)
  • 22. Polewczak, J.: Classical solution of the nonlinear Boltzmann equation in all $ R^3$: asymptotic behavior of solutions. J. Stat. Phys. 50 (1988) 611-632. MR 939503 (89h:82021)
  • 23. Shinbrot, M.: The Boltzmann equation: flow of a cloud of gas past a body. Transport Theory Statist. Phys. 15 (1986) 317-332. MR 839634 (87f:76089)
  • 24. Shizuta, Y., Asano, K.: Global solutions of the Boltzmann equation in a bounded convex domain. Proc. Japan Acad. 53 (1977), 3-5. MR 0466988 (57:6861)
  • 25. Sone, Y., Takata, S.: Discontinuity of the velocity distribution function in a rarefied gas around a convex body and the $ s$ layer at the bottom of the Knudsen layer. Transport Theory Statist. Phys. 21 (1992) 501-530.
  • 26. Toscani, G.: Global solution of the initial value problem for the Boltzmann equation near a local Maxwellian. Arch. Rational Mech. Anal. 102 (1988) 231-241. MR 944547 (90b:35225)
  • 27. Toscani, G.: $ H$-theorem and asymptotic trend of the solution for a rarefied gas in a vacuum. Arch. Rational Mech. Anal. 100 (1987) 1-12. MR 906131 (89b:82053)
  • 28. Toscani, G.: On the nonlinear Boltzmann equation in unbounded domains, Arch. Rational Mech. Anal. 95 (1986) 37-49. MR 849403 (87j:82060)
  • 29. Toscani, G., Protopopescu, V.: The nonlinear Boltzmann equation with partially absorbing boundary conditions: Global existence and uniqueness results.
  • 30. Ukai, S.: Solutions of the Boltzmann equation. Patterns and waves. Stud. Math. Appl., 18, North-Holland, Amsterdam, 1986. MR 882376 (88g:35187)
  • 31. Ukai, S., Asano, K.: Steady solutions of the Boltzmann equation for a gas flow past an obstacle I. Existence. Arch. Rational Mech. Anal. 84 (1983) 249-291. MR 714977 (85a:76079)
  • 32. Ukai, S., Asano, K.: Steady solutions of the Boltzmann equation for a gas flow past an obstacle II. Stability. Publ. Res. Inst. Math. Sci. 22 (1986) 1035-1062. MR 879996 (88f:76033)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35Q35

Retrieve articles in all journals with MSC (2000): 35Q35

Additional Information

Myeongju Chae
Affiliation: Department of Applied Mathematics, Hankyong National University, Ansung 456-749, Korea
Email: mchae@kias.re.kr

Seung-Yeal Ha
Affiliation: Department of Mathematics, Seoul National University, Seoul 151-747, Korea
Email: syha@math.snu.ac.kr

DOI: https://doi.org/10.1090/S0033-569X-07-01060-4
Received by editor(s): April 13, 2006
Published electronically: August 24, 2007
Dedicated: This paper is dedicated to Tai-Ping Liu on the occasion of his sixtieth birthday.
Article copyright: © Copyright 2007 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society