Kernel sections of multi-valued processes with application to the nonlinear reaction-diffusion equations in unbounded domains

Authors:
Yejuan Wang and Shengfan Zhou

Journal:
Quart. Appl. Math. **67** (2009), 343-378

MSC (2000):
Primary 34B40, 35K57

Published electronically:
March 25, 2009

MathSciNet review:
2514639

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: First, we introduce the concept of pullback -limit compactness for multi-valued processes, as an extension of the similar concept in the autonomous and nonautonomous framework. Next, we present the necessary and sufficient conditions (pullback dissipativeness and pullback -limit compactness) for the existence of a nonempty local bounded kernel (kernel sections are all compact, invariant and pullback attracting) of an infinite dimensional multi-valued process. In addition, we prove a result ensuring the existence of a uniform attractor and the uniform forward attraction of the inflated kernel sections of a family of multi-valued processes under the general assumptions of point dissipativeness and uniform -limit compactness. Finally, we illustrate the abstract theory with a nonlinear reaction-diffusion model in an unbounded domain.

**1.**Jean-Pierre Aubin and Arrigo Cellina,*Differential inclusions*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR**755330****2.**Jean-Pierre Aubin and Hélène Frankowska,*Set-valued analysis*, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR**1048347****3.**J. M. Ball,*Global attractors for damped semilinear wave equations*, Discrete Contin. Dyn. Syst.**10**(2004), no. 1-2, 31–52. Partial differential equations and applications. MR**2026182**, 10.3934/dcds.2004.10.31**4.**T. Caraballo, J. A. Langa, and J. Valero,*Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise*, J. Math. Anal. Appl.**260**(2001), no. 2, 602–622. MR**1845571**, 10.1006/jmaa.2001.7497**5.**T. Caraballo, J. A. Langa, V. S. Melnik, and J. Valero,*Pullback attractors of nonautonomous and stochastic multivalued dynamical systems*, Set-Valued Anal.**11**(2003), no. 2, 153–201. MR**1966698**, 10.1023/A:1022902802385**6.**T. Caraballo, P. Marín-Rubio, and J. C. Robinson,*A comparison between two theories for multi-valued semiflows and their asymptotic behaviour*, Set-Valued Anal.**11**(2003), no. 3, 297–322. MR**1992066**, 10.1023/A:1024422619616**7.**T. Caraballo, P. Marín-Rubio, and J. Valero,*Autonomous and non-autonomous attractors for differential equations with delays*, J. Differential Equations**208**(2005), no. 1, 9–41. MR**2107292**, 10.1016/j.jde.2003.09.008**8.**T. Caraballo, G. Łukaszewicz, and J. Real,*Pullback attractors for asymptotically compact non-autonomous dynamical systems*, Nonlinear Anal.**64**(2006), no. 3, 484–498. MR**2191992**, 10.1016/j.na.2005.03.111**9.**D. N. Cheban, P. E. Kloeden, and B. Schmalfuß,*The relationship between pullback, forward and global attractors of nonautonomous dynamical systems*, Nonlinear Dyn. Syst. Theory**2**(2002), no. 2, 125–144. MR**1989935****10.**V. Chepyzhov and M. Vishik,*A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations*, Indiana Univ. Math. J.**42**(1993), no. 3, 1057–1076. MR**1254132**, 10.1512/iumj.1993.42.42049**11.**Vladimir V. Chepyzhov and Mark I. Vishik,*Dimension estimates for attractors and for kernel sections of nonautonomous evolution equations*, C. R. Acad. Sci. Paris Sér. I Math.**317**(1993), no. 4, 365–370 (English, with English and French summaries). MR**1235450****12.**V. V. Chepyzhov and M. I. Vishik,*Attractors of nonautonomous dynamical systems and their dimension*, J. Math. Pures Appl. (9)**73**(1994), no. 3, 279–333. MR**1273705****13.**Vladimir V. Chepyzhov and Mark I. Vishik,*Attractors for equations of mathematical physics*, American Mathematical Society Colloquium Publications, vol. 49, American Mathematical Society, Providence, RI, 2002. MR**1868930****14.**Klaus Deimling,*Nonlinear functional analysis*, Springer-Verlag, Berlin, 1985. MR**787404****15.**Klaus Deimling,*Multivalued differential equations*, de Gruyter Series in Nonlinear Analysis and Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1992. MR**1189795****16.**Xiaoming Fan and Shengfan Zhou,*Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type*, Appl. Math. Comput.**158**(2004), no. 1, 253–266. MR**2091247**, 10.1016/j.amc.2003.08.147**17.**Jack K. Hale,*Asymptotic behavior of dissipative systems*, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR**941371****18.**Peter E. Kloeden and José A. Langa,*Flattening, squeezing and the existence of random attractors*, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.**463**(2007), no. 2077, 163–181. MR**2281716**, 10.1098/rspa.2006.1753**19.**Desheng Li,*On dynamical stability in general dynamical systems*, J. Math. Anal. Appl.**263**(2001), no. 2, 455–478. MR**1866058**, 10.1006/jmaa.2001.7620**20.**Songsong Lu, Hongqing Wu, and Chengkui Zhong,*Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces*, Discrete Contin. Dyn. Syst.**13**(2005), no. 3, 701–719. MR**2153139**, 10.3934/dcds.2005.13.701**21.**Qingfeng Ma, Shouhong Wang, and Chengkui Zhong,*Necessary and sufficient conditions for the existence of global attractors for semigroups and applications*, Indiana Univ. Math. J.**51**(2002), no. 6, 1541–1559. MR**1948459**, 10.1512/iumj.2002.51.2255**22.**Valery S. Melnik and José Valero,*On attractors of multivalued semi-flows and differential inclusions*, Set-Valued Anal.**6**(1998), no. 1, 83–111. MR**1631081**, 10.1023/A:1008608431399**23.**George R. Sell and Yuncheng You,*Dynamics of evolutionary equations*, Applied Mathematical Sciences, vol. 143, Springer-Verlag, New York, 2002. MR**1873467****24.**Chun-you Sun and Cheng-kui Zhong,*Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains*, Nonlinear Anal.**63**(2005), no. 1, 49–65. MR**2167314**, 10.1016/j.na.2005.04.034**25.**Roger Temam,*Infinite-dimensional dynamical systems in mechanics and physics*, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. MR**1441312****26.**M. I. Vishik and V. V. Chepyzhov,*Trajectory and global attractors of the three-dimensional Navier-Stokes system*, Mat. Zametki**71**(2002), no. 2, 194–213 (Russian, with Russian summary); English transl., Math. Notes**71**(2002), no. 1-2, 177–193. MR**1900793**, 10.1023/A:1014190629738**27.**Wang Yejuan, Li Desheng, and P. E. Kloeden,*On the asymptotical behavior of nonautonomous dynamical systems*, Nonlinear Anal.**59**(2004), no. 1-2, 35–53. MR**2092077**, 10.1016/j.na.2004.03.035**28.**Yejuan Wang, Chengkui Zhong, and Shengfan Zhou,*Pullback attractors of nonautonomous dynamical systems*, Discrete Contin. Dyn. Syst.**16**(2006), no. 3, 587–614. MR**2257151**, 10.3934/dcds.2006.16.705**29.**Yejuan Wang and Shengfan Zhou,*Kernel sections and uniform attractors of multi-valued semiprocesses*, J. Differential Equations**232**(2007), no. 2, 573–622. MR**2286392**, 10.1016/j.jde.2006.07.005**30.**Cheng-Kui Zhong, Mei-Hua Yang, and Chun-You Sun,*The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations*, J. Differential Equations**223**(2006), no. 2, 367–399. MR**2214940**, 10.1016/j.jde.2005.06.008**31.**Shengfan Zhou,*Kernel sections for damped non-autonomous wave equations with linear memory and critical exponent*, Quart. Appl. Math.**61**(2003), no. 4, 731–757. MR**2019621****32.**Shengfan Zhou and Linshan Wang,*Kernel sections for damped non-autonomous wave equations with critical exponent*, Discrete Contin. Dyn. Syst.**9**(2003), no. 2, 399–412. MR**1952382**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC (2000):
34B40,
35K57

Retrieve articles in all journals with MSC (2000): 34B40, 35K57

Additional Information

**Yejuan Wang**

Affiliation:
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, People’s Republic of China

Email:
wangyj@lzu.edu.cn, wangyjmath@yahoo.com.cn

**Shengfan Zhou**

Affiliation:
Department of Applied Mathematics, Shanghai Normal University, Shanghai 200234, People’s Republic of China

Email:
zhoushengfan@yahoo.com

DOI:
https://doi.org/10.1090/S0033-569X-09-01150-0

Keywords:
Multi-valued process,
kernel section,
nonautonomous reaction-diffusion equations in unbounded domains

Received by editor(s):
February 13, 2008

Published electronically:
March 25, 2009

Additional Notes:
Y. J. Wang was supported by the National Natural Science Foundation of China under Grant 10801066 and the Fundamental Research Fund for Physics and Mathematics of Lanzhou University (LZULL200802).

S. Zhou was supported by the National Natural Science Foundation of China under Grant 10771139, the Innovation Program of Shanghai Municipal Education Commission under Grant 08ZZ70, and the Foundation of Shanghai Normal University under Grant DYL200803.

Article copyright:
© Copyright 2009
Brown University