Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
  Quarterly of Applied Mathematics
Quarterly of Applied Mathematics
  
Online ISSN 1552-4485; Print ISSN 0033-569X
 

   

 

Modeling the flash-heat experiment on porous domains


Authors: H. T. Banks, D. Cioranescu, A. K. Criner and W. P. Winfree
Journal: Quart. Appl. Math. 70 (2012), 53-67
MSC (2000): Primary 35B27, 76R50, 78M40
Published electronically: September 16, 2011
MathSciNet review: 2920615
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss a mathematical model for the flash-heat experiment in homogeneous isotropic media. We then use this model to investigate the use of homogenization techniques in approximating models for interrogation via flash-heating in porous materials. We represent porous materials as both randomly perforated domains and periodically perforated domains.


References [Enhancements On Off] (What's this?)

  • 1. H.T. Banks, B. Boudreaux, A. K. Criner, K. Foster, C. Uttal, T. Vogel, A.K. Criner and W.P. Winfree, Thermal based damage detection in porous materials, Tech. Rep. CRSC-TR08-11, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, September, 2008; Inverse Probl. Sci. Engr., 18 (2009), 835-851.
  • 2. H.T. Banks, D. Cioranescu, A.K. Criner and W.P. Winfree, Modeling the flash-heat experiment on porous domains, Tech. Rep. CRSC-TR10-06, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, May, 2010.
  • 3. H. T. Banks, N. L. Gibson and W. P. Winfree, Void detection in complex geometries, Tech. Rep. CRSC-TR08-09, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, May, 2008.
  • 4. H. T. Banks, Michele L. Joyner, Buzz Wincheski, and William P. Winfree, Nondestructive evaluation using a reduced-order computational methodology, Inverse Problems 16 (2000), no. 4, 929–945. MR 1776475 (2001e:78022), 10.1088/0266-5611/16/4/304
  • 5. H. T. Banks and Fumio Kojima, Boundary shape identification problems in two-dimensional domains related to thermal testing of materials, Quart. Appl. Math. 47 (1989), no. 2, 273–293. MR 998101 (90f:65168)
  • 6. H. T. Banks and F. Kojima, Identification of material damage in two-dimensional domains using the SQUID-based nondestructive evaluation system, Inverse Problems 18 (2002), no. 6, 1831–1855. Special section on electromagnetic and ultrasonic nondestructive evaluation. MR 1955921, 10.1088/0266-5611/18/6/324
  • 7. H. T. Banks, Fumio Kojima, and W. P. Winfree, Boundary estimation problems arising in thermal tomography, Inverse Problems 6 (1990), no. 6, 897–921. MR 1082231 (91k:80003)
  • 8. D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in domains with holes, to appear.
  • 9. Doina Cioranescu and Jeannine Saint Jean Paulin, Homogenization of reticulated structures, Applied Mathematical Sciences, vol. 136, Springer-Verlag, New York, 1999. MR 1676922 (2000d:74064)
  • 10. Doina Cioranescu and Patrizia Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol. 17, The Clarendon Press, Oxford University Press, New York, 1999. MR 1765047 (2001j:35019)
  • 11. Patrizia Donato and Aïssam Nabil, Homogenization and correctors for the heat equation in perforated domains, Ricerche Mat. 50 (2001), no. 1, 115–144. MR 1941824 (2003i:35017)
  • 12. The Mathworks, Inc., Partial Differential Equation Toolbox 1: User's Guide, The Mathworks, Inc., Natick, MA, 2008.
  • 13. W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32 (9):1679-1684, 1961.
  • 14. Pavel Šolín, Partial differential equations and the finite element method, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006. MR 2180081 (2006f:35004)
  • 15. Wenping Wang, Jiaye Wang, and Myung-Soo Kim, An algebraic condition for the separation of two ellipsoids, Comput. Aided Geom. Design 18 (2001), no. 6, 531–539. MR 1843064 (2002c:65030), 10.1016/S0167-8396(01)00049-8

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35B27, 76R50, 78M40

Retrieve articles in all journals with MSC (2000): 35B27, 76R50, 78M40


Additional Information

H. T. Banks
Affiliation: Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8212

D. Cioranescu
Affiliation: Laboratoire J. L. Lions, Université Pierre et Marie Curie, 175 rue du Chevaleret, 75013 Paris, France

A. K. Criner
Affiliation: Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8212

W. P. Winfree
Affiliation: Nondestructive Evaluation Science Branch, NASA Langley Research Center, MS 231, Hampton, Virginia 23681

DOI: http://dx.doi.org/10.1090/S0033-569X-2011-01230-8
PII: S 0033-569X(2011)01230-8
Keywords: Modeling porous media, thermal diffusion, homogenization
Received by editor(s): May 16, 2010
Published electronically: September 16, 2011
Article copyright: © Copyright 2011 Brown University



Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2015 Brown University
Comments: qam-query@ams.org
AMS Website