Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Modeling the flash-heat experiment on porous domains


Authors: H. T. Banks, D. Cioranescu, A. K. Criner and W. P. Winfree
Journal: Quart. Appl. Math. 70 (2012), 53-67
MSC (2000): Primary 35B27, 76R50, 78M40
DOI: https://doi.org/10.1090/S0033-569X-2011-01230-8
Published electronically: September 16, 2011
MathSciNet review: 2920615
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss a mathematical model for the flash-heat experiment in homogeneous isotropic media. We then use this model to investigate the use of homogenization techniques in approximating models for interrogation via flash-heating in porous materials. We represent porous materials as both randomly perforated domains and periodically perforated domains.


References [Enhancements On Off] (What's this?)

  • 1. H.T. Banks, B. Boudreaux, A. K. Criner, K. Foster, C. Uttal, T. Vogel, A.K. Criner and W.P. Winfree, Thermal based damage detection in porous materials, Tech. Rep. CRSC-TR08-11, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, September, 2008; Inverse Probl. Sci. Engr., 18 (2009), 835-851.
  • 2. H.T. Banks, D. Cioranescu, A.K. Criner and W.P. Winfree, Modeling the flash-heat experiment on porous domains, Tech. Rep. CRSC-TR10-06, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, May, 2010.
  • 3. H. T. Banks, N. L. Gibson and W. P. Winfree, Void detection in complex geometries, Tech. Rep. CRSC-TR08-09, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, May, 2008.
  • 4. H. T. Banks, M. L. Joyner, B. Wincheski and W. P. Winfree, Nondestructive evaluation using a reduced-order computational methodology, Inverse Probl. 16(4):929-945, 2000. MR 1776475 (2001e:78022)
  • 5. H.T. Banks and F. Kojima, Boundary shape identification problems in two-dimensional domains related to thermal testing of materials, Quart. Appl. Math. 47 (2):273-293, 1989. MR 0998101 (90f:65168)
  • 6. H. T. Banks and F. Kojima, Identification of material damage in two-dimensional domains using the SQUID-based nondestructive evaluation system, Inverse Probl. 18 (6):1831-1855, 2002. MR 1955921
  • 7. H. T. Banks, F. Kojima and W. P. Winfree, Boundary estimation problems arising in thermal tomography, Inverse Probl. 6 (6):897-921, 1990. MR 1082231 (91k:80003)
  • 8. D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in domains with holes, to appear.
  • 9. D. Cioranescu and J. Saint Jean Paulin. Homogenization of Reticulated Structures, Volume 136 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999. MR 1676922 (2000d:74064)
  • 10. D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications Volume 27, Oxford University Press, New York, 1999. MR 1765047 (2001j:35019)
  • 11. P. Donato and A. Nabil, Homogenization and correctors for the heat equation in perforated domains, Ric. Mat., 50(1):115-144, 2001. MR 1941824 (2003i:35017)
  • 12. The Mathworks, Inc., Partial Differential Equation Toolbox 1: User's Guide, The Mathworks, Inc., Natick, MA, 2008.
  • 13. W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32 (9):1679-1684, 1961.
  • 14. Pavel Solin, Partial Differential Equations and the Finite Element Method, John Wiley & Sons, Inc., Hoboken, NJ, 2006. MR 2180081 (2006f:35004)
  • 15. Wenping Wang, Jiaye Wang and Myung-Soo Kim, An algebraic condition for the separation of two ellipsoids, Comput. Aided Geom. Design, 18(6):531-539, 2001. MR 1843064 (2002c:65030)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35B27, 76R50, 78M40

Retrieve articles in all journals with MSC (2000): 35B27, 76R50, 78M40


Additional Information

H. T. Banks
Affiliation: Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8212

D. Cioranescu
Affiliation: Laboratoire J. L. Lions, Université Pierre et Marie Curie, 175 rue du Chevaleret, 75013 Paris, France

A. K. Criner
Affiliation: Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina 27695-8212

W. P. Winfree
Affiliation: Nondestructive Evaluation Science Branch, NASA Langley Research Center, MS 231, Hampton, Virginia 23681

DOI: https://doi.org/10.1090/S0033-569X-2011-01230-8
Keywords: Modeling porous media, thermal diffusion, homogenization
Received by editor(s): May 16, 2010
Published electronically: September 16, 2011
Article copyright: © Copyright 2011 Brown University

American Mathematical Society