Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



The value function of the shallow lake problem as a viscosity solution of a HJB equation

Authors: Georgios Kossioris and Christos Zohios
Journal: Quart. Appl. Math. 70 (2012), 625-657
MSC (2010): Primary 49L25
DOI: https://doi.org/10.1090/S0033-569X-2012-01253-2
Published electronically: June 21, 2012
MathSciNet review: 3052082
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The economic analysis of a shallow lake ecological system requires the study of a nonstandard optimal control problem due to the conflicting services it provides and the nonlinearity of the governing dynamics. We first investigate the geometry of the optimal control-optimal path pair, by standard control analysis, for a given range of the discount factor. We then consider the welfare function (value function) as a viscosity solution of a reduced Hamilton-Jacobi-Bellman equation and we prove various regularity properties which are related to the dynamics of the problem. Finally, we approximate the welfare function by monotone convergent numerical schemes and present the numerical results.

References [Enhancements On Off] (What's this?)

  • 1. L. Ambrosio, P. Cannarsa, and H. M. Soner, On the propagation of singularities of semi-convex functions, Annali Scuola Norm. Sup. Pisa 20(4) (1993), 597-616. MR 1267601 (95b:49068)
  • 2. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, Boston, 1997. MR 1484411 (99e:49001)
  • 3. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications 17, Springer-Verlag 1994. MR 1613876 (2000b:49054)
  • 4. G. Barles and P. E. Souganidis Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4 (1991), 271-283. MR 1115933 (92d:35137)
  • 5. W. A. Brock and D. Starrett, Managing systems with non-convex positive feedback, Environmental & Resource Economics 26 (2003) 575-602.
  • 6. P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and Their Applications V. 58, Birkhäuser Boston Inc., Boston, MA, 2004. MR 2041617 (2005e:49001)
  • 7. P. Cannarsa and H. M. Soner, On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations, Indiana Univ. Math. J. 36(3) (1987), 501-524. MR 905608 (89m:35044)
  • 8. S. R. Carpenter, D.  Ludwig and W. A. Brock, Management of eutrophication for lakes subject to potentially irreversible change, Ecological Applications, 9(3) (1999), 751-771.
  • 9. M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487-502. MR 732102 (86a:35031)
  • 10. M. G. Crandall and P. L. Lions, Viscosity Solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42. MR 690039 (85g:35029)
  • 11. W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975. MR 0454768 (56:13016)
  • 12. L. Grüne, M. Kato and W. Semmler, Solving ecological management problems using dynamic programming, Journal of Economic Behavior & Organization, 57 (2005), 448-473.
  • 13. R. Jensen and P. E. Souganidis, A regularity result for viscosity solutions of Hamilton-Jacobi equations in one space dimension, Trans. Amer. Math. Soc. 301, no. 1 (1987), 137-147. MR 879566 (88h:35020)
  • 14. K. Kawaguchi, Optimal Control of Pollution Accumulation with Long-Run Average Welfare, Environmental and Resource Economics 26(3) (2003), 457-468.
  • 15. K-G. Mäler, A. Xepapadeas, and A. de Zeeuw, The Economics of Shallow Lakes, Environmental and Resource Economics 26(4) (2003), 603-624.
  • 16. A. Seierstad and K. Sydsæter, Optimal control theory with economic applications, Advanced Textbooks in Economics V. 24, 1987. MR 887536 (88h:49002)
  • 17. J. A. Sethian, Level Set Methods and Fast Marching Methods (2nd edition), Cambridge University Press, 1999. MR 1700751 (2000c:65015)
  • 18. A. K. Skiba, Optimal growth with a convex-concave production function, Econometrica 46(3) (1978), 527-539. MR 491898 (81e:90029)
  • 19. H. M. Soner, Optimal control with state space constraint I, SIAM J. Control Optim. 24 (1986) 552-562; II, 24 (1986) 1110-1122. MR 838056 (87e:49029)
  • 20. J. Stoer and R. Bulirsch, Introduction to numerical analysis (3rd edition), New York: Springer-Verlag, 2002. MR 1923481 (2003d:65001)
  • 21. F. O. O. Wagener, Skiba points and heteroclinic bifurcations, with applications to the shallow lake system, J. Econom. Dynam. Control 27, no. 9 (2003), 1533-1561. MR 1962514 (2003m:91118)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 49L25

Retrieve articles in all journals with MSC (2010): 49L25

Additional Information

Georgios Kossioris
Affiliation: Department of Mathematics, University of Crete, Knossou Avenue, P.O. BOX 2208, Heraklion 71409, Greece
Email: kosioris@math.uoc.gr

Christos Zohios
Affiliation: Department of Mathematics, University of Crete, Knossou Avenue, P.O. BOX 2208, Heraklion 71409, Greece
Email: zohios@math.uoc.gr

DOI: https://doi.org/10.1090/S0033-569X-2012-01253-2
Received by editor(s): September 20, 2010
Published electronically: June 21, 2012
Additional Notes: The authors would like to thank Prof. A. Xepapadeas and Prof. G. Zouraris for stimulating discussions and suggestions
Article copyright: © Copyright 2012 Brown University

American Mathematical Society