Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Decay rates and global existence for semilinear dissipative Timoshenko systems


Authors: Reinhard Racke and Belkacem Said-Houari
Journal: Quart. Appl. Math. 71 (2013), 229-266
MSC (2010): Primary 35L71, 35B40
DOI: https://doi.org/10.1090/S0033-569X-2012-01280-8
Published electronically: October 3, 2012
MathSciNet review: 3087421
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove new decay estimates for the dissipative Timoshenko system in the one-dimensional whole space, and a global existence theorem for semilinear systems. More precisely, if we restrict the initial data $ ( (\varphi _{0},\psi _0),(\varphi _{1},\psi _1)) $ $ \in \Big ( H^{s+1}( \mathbb{R}^{N}) \cap L^{1,\gamma }( \mathbb{R}^{N}) \Big )... ... \Big ( H^{s}( \mathbb{R}^{N})\Big ) \cap L^{1,\gamma }( \mathbb{R}^{N}) \Big )$ with $ \gamma \in \left [ 0,1\right ]$, then we can derive faster decay estimates than those given by Ide, Haramoto and Kawashima. In addition, we use these decay estimates of the linear problem combined with the weighted energy method introduced by Todorova and Yordanov with the special weight given by Ikehata and Inoue to solve a semilinear problem with low regularity.


References [Enhancements On Off] (What's this?)

  • 1. F. Alabau-Boussouira.
    Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control.
    Nonlinear Differ. Equ. Appl., 14:643-669, 2007. MR 2374204 (2009h:93088)
  • 2. F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera, and R. Racke.
    Energy decay for Timoshenko systems of memory type.
    J. Differential Equations, 194(1):82-115, 2003. MR 2001030 (2004f:74032)
  • 3. K. Beauchard and E. Zuazua.
    Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rational Mech. Anal., 199:177-227, 2011. MR 2754341
  • 4. S. Bianchini, B. Hanouzet, and R. Natalini.
    Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy.
    Comm. Partial Differential Equations, 60:1559-1622, 2007. MR 2349349 (2010i:35227)
  • 5. H. Fujita.
    On the blowing up of solutions of the Cauchy problem for $ u_{t}={\Delta } u+u^{\alpha +1}$.
    J. Fac. Sci. Univ. Tokyo Sect. A Math., 16:105-113, 1966. MR 0214914 (35:5761)
  • 6. K. Graff.
    Wave Motion in Elastic Solids.
    Dover, New York, 1975.
  • 7. A. Guesmia and S. A. Messaoudi.
    General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping.
    Math. Meth. Appl. Sci., 32(16):2102-2122, 2009. MR 2571867 (2011e:35370)
  • 8. R. A. Horn and C. R. Johnson.
    Topics in Matrix Analysis.
    Cambridge University Press, 1991. MR 1091716 (92e:15003)
  • 9. K. Ide, K. Haramoto, and S. Kawashima.
    Decay property of regularity-loss type for dissipative Timoshenko system.
    Math. Mod. Meth. Appl. Sci., 18(5):647-667, 2008. MR 2413032 (2009k:35314)
  • 10. K. Ide and S. Kawashima.
    Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system.
    Math. Mod. Meth. Appl. Sci., 18(7):1001-1025, 2008. MR 2435183 (2009h:35424)
  • 11. R. Ikehata.
    New decay estimates for linear damped wave equations and its application to nonlinear problem.
    Math. Meth. Appl. Sci., 27(8):865-889, 2004. MR 2055280 (2005k:35245)
  • 12. R. Ikehata and Y. Inoue.
    Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain.
    Nonlinear Anal., 68:154-169, 2008. MR 2361145 (2009b:35283)
  • 13. R. Ikehata and K. Tanizawa.
    Global existence of solutions for semilinear damped wave equations in $ \mathbb{R}^{N}$ with noncompactly supported initial data.
    Nonlinear Anal., 61:1189-1208, 2005. MR 2131649 (2005m:35192)
  • 14. T. Kato.
    Perturbation theory for linear operators.
    2nd ed., Springer-Verlag, 1976. MR 0407617 (53:11389)
  • 15. J.U. Kim and Y. Renardy.
    Boundary control of the Timoshenko beam.
    SIAM J. Control. Optim., 25(6):1417-1429, 1987. MR 912448 (88m:93124)
  • 16. Z. Liu and B. Rao.
    Energy decay rate of the thermoelastic Bresse system.
    Z. Angew. Math. Phys., 60:54-69, 2009. MR 2469727 (2009m:74035)
  • 17. A. Matsumura.
    On the asymptotic behavior of solutions of semi-linear wave equations.
    Publ. Res. Inst. Math. Sci., 12(1):169-189, 1976. MR 0420031 (54:8048)
  • 18. S. A. Messaoudi and M. A. Mustafa.
    A stability result in a memory-type Timoshenko system.
    Dynamic Systems Appl., 18(3-4):457-468, 2009. MR 2562283 (2010k:35490)
  • 19. S. A. Messaoudi and M. I. Mustafa.
    On the stabilization of the Timoshenko system by a weak nonlinear dissipation.
    Math. Meth. Appl. Sci., 32(4):454-469, 2009. MR 2493590 (2010c:93086)
  • 20. S. A. Messaoudi, M. Pokojovy, and B. Said-Houari.
    Nonlinear damped Timoshenko systems with second sound-global existence and exponential stability.
    Math. Meth. Appl. Sci., 32(5):505-534, 2009. MR 2500690 (2010d:35358)
  • 21. S. A. Messaoudi and B. Said-Houari.
    Energy decay in a Timoshenko-type system of thermoelasticity of type III.
    J. Math. Anal. Appl., 348(1):1225-1237, 2008. MR 2449347 (2009k:74037)
  • 22. S. A. Messaoudi and B. Said-Houari.
    Energy decay in a Timoshenko-type system with history in thermoelasticity of type III.
    Advances in Differential Equations, 14(3-4):375-400, 2009. MR 2493566 (2010e:35281)
  • 23. S. A. Messaoudi and B. Said-Houari.
    Uniform decay in a Timoshenko-type system with past history.
    J. Math. Anal. Appl., 360(2):459-475, 2009. MR 2561244 (2011e:35372)
  • 24. L. Nirenberg.
    On elliptic partial differential equations.
    Ann. Scuola Norm. Sup. Pisa, 13(3):115-162, 1959. MR 0109940 (22:823)
  • 25. R. Racke.
    Lectures on nonlinear evolution equations. Initial value problems. Aspects of mathematics, E19.
    Friedrich Vieweg and Sohn: Braunschweig, Wiesbaden, 1992. MR 1158463 (93a:35002)
  • 26. J. E. Muñoz Rivera and R. Racke.
    Mildly dissipative nonlinear Timoshenko systems, global existence and exponential stability.
    J. Math. Anal. Appl., 276:248-276, 2002.
  • 27. J. E. Muñoz Rivera and R. Racke.
    Global stability for damped Timoshenko systems.
    Discrete Contin. Dyn. Syst., 9(6):1625-1639, 2003. MR 2017685 (2004j:35028)
  • 28. J. E. Muñoz Rivera and R. Racke.
    Timoshenko systems with indefinite damping.
    J. Math. Anal. Appl., 341(2):1068-1083, 2008. MR 2398270 (2009g:74096)
  • 29. J. E. Muñoz Rivera and H. D. Fernández Sare.
    Stability of Timoshenko systems with past history.
    J. Math. Anal. Appl., 339(1):482-502, 2008. MR 2370668 (2009b:74062)
  • 30. B. Said-Houari and Y. Laskri.
    A stability result of a Timoshenko system with a delay term in the internal feedback.
    Appl. Math. Comput., 217:2857-2869, 2010. MR 2733729 (2011g:35392)
  • 31. H. D. Fernández Sare and R. Racke.
    On the stability of damped Timoshenko systems: Cattaneo versus Fourier law.
    Arch. Rational Mech. Anal., 194(1):221-251, 2009. MR 2533927 (2010i:35042)
  • 32. I. E. Segal.
    Dispersion for non-linear relativistic equations, II.
    Ann. Sci. Ecole Norm. Sup., 1(4):459-497, 1968. MR 0243788 (39:5109)
  • 33. Y. Shizuta and S. Kawashima.
    Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation.
    Hokkaido Math. J., 14:249-275, 1985. MR 798756 (86k:35107)
  • 34. A. Soufyane and A. Wehbe.
    Exponential stability for the Timoshenko beam by a locally distributed damping.
    Electron. J. Differential Equations, 29:1-14, 2003. MR 1958624 (2003j:93074)
  • 35. S. Timoshenko.
    On the correction for shear of the differential equation for transverse vibrations of prismatic bars.
    Philisophical Magazine, 41:744-746, 1921.
  • 36. G. Todorova and B. Yordanov.
    Critical exponent for a nonlinear wave equation with damping.
    J. Differential Equations, 174:464-489, 2001. MR 1846744 (2002k:35218)
  • 37. H. Yang and A. Milani.
    On the diffusion phenomenon of quasilinear hyperbolic waves.
    Bulletin des Sciences Mathématiques, 124(5):415-433, 2000. MR 1781556 (2001f:35271)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35L71, 35B40

Retrieve articles in all journals with MSC (2010): 35L71, 35B40


Additional Information

Reinhard Racke
Affiliation: Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany
Email: reinhard.racke@uni-konstanz.de

Belkacem Said-Houari
Affiliation: Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany
Email: belkacem.said-houari@kaust.edu.sa

DOI: https://doi.org/10.1090/S0033-569X-2012-01280-8
Keywords: Global existence, decay rate, Timoshenko system, semilinear wave equation
Received by editor(s): May 30, 2011
Published electronically: October 3, 2012
Article copyright: © Copyright 2012 Brown University

American Mathematical Society