Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the particle motion in geophysical deep water waves traveling over uniform currents


Author: Anca-Voichita Matioc
Journal: Quart. Appl. Math. 72 (2014), 455-469
MSC (2010): Primary 76B15; Secondary 74G05, 37N10
DOI: https://doi.org/10.1090/S0033-569X-2014-01337-5
Published electronically: April 23, 2014
MathSciNet review: 3237559
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a family of exact Gerstner-type solutions for the geophysical equatorial deep water wave problem in the $ f$-plane approximation. These Gerstner-type waves are two-dimensional and travel with constant speed over a uniform horizontal current. The particle paths in the presence and absence of the Coriolis force are also analyzed in dependence of the current strength.


References [Enhancements On Off] (What's this?)

  • [1] Adrian Constantin, Edge waves along a sloping beach, J. Phys. A 34 (2001), no. 45, 9723-9731. MR 1876166 (2002j:76015), https://doi.org/10.1088/0305-4470/34/45/311
  • [2] Adrian Constantin, On the deep water wave motion, J. Phys. A 34 (2001), no. 7, 1405-1417. MR 1819940 (2002b:76010), https://doi.org/10.1088/0305-4470/34/7/313
  • [3] Adrian Constantin, The trajectories of particles in Stokes waves, Invent. Math. 166 (2006), no. 3, 523-535. MR 2257390 (2007j:35240), https://doi.org/10.1007/s00222-006-0002-5
  • [4] Adrian Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. MR 2867413
  • [5] Adrian Constantin. On the modelling of Equatorial waves. Geophys. Res. Lett., 39:L05602, 2012.
  • [6] Adrian Constantin, Mats Ehrnström, and Gabriele Villari, Particle trajectories in linear deep-water waves, Nonlinear Anal. Real World Appl. 9 (2008), no. 4, 1336-1344. MR 2422547 (2009f:35265), https://doi.org/10.1016/j.nonrwa.2007.03.003
  • [7] Adrian Constantin, Mats Ehrnström, and Erik Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J. 140 (2007), no. 3, 591-603. MR 2362244 (2009c:35359), https://doi.org/10.1215/S0012-7094-07-14034-1
  • [8] Adrian Constantin and Joachim Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math. 15 (2004), no. 6, 755-768. MR 2144685 (2006b:76013), https://doi.org/10.1017/S0956792504005777
  • [9] Adrian Constantin and Joachim Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech. 498 (2004), 171-181. MR 2256915 (2007f:76023), https://doi.org/10.1017/S0022112003006773
  • [10] Adrian Constantin and Joachim Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2) 173 (2011), no. 1, 559-568. MR 2753609 (2012a:35367), https://doi.org/10.4007/annals.2011.173.1.12
  • [11] Adrian Constantin and Walter Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math. 63 (2010), no. 4, 533-557. MR 2604871 (2011b:76017), https://doi.org/10.1002/cpa.20299
  • [12] Adrian Constantin and Gabriele Villari, Particle trajectories in linear water waves, J. Math. Fluid Mech. 10 (2008), no. 1, 1-18. MR 2383410 (2009a:76017), https://doi.org/10.1007/s00021-005-0214-2
  • [13] Isabelle Gallagher and Laure Saint-Raymond. On the influence of the earth's rotation on geophysical flows. Handbook of Mathematical Fluid Dynamics, 4:201-329, 2007.
  • [14] Franz Gerstner. Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys., 2:412-445, 1809.
  • [15] David Henry, The trajectories of particles in deep-water Stokes waves, Int. Math. Res. Not. , posted on (2006), Art. ID 23405, 13. MR 2272104 (2007k:76017), https://doi.org/10.1155/IMRN/2006/23405
  • [16] David Henry, Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves, J. Nonlinear Math. Phys. 14 (2007), no. 1, 1-7. MR 2287829 (2007k:76018), https://doi.org/10.2991/jnmp.2007.14.1.1
  • [17] David Henry, On Gerstner's water wave, J. Nonlinear Math. Phys. 15 (2008), no. suppl. 2, 87-95. MR 2434727 (2009k:76020), https://doi.org/10.2991/jnmp.2008.15.s2.7
  • [18] Delia Ionescu-Kruse, Particle trajectories in linearized irrotational shallow water flows, J. Nonlinear Math. Phys. 15 (2008), no. suppl. 2, 13-27. MR 2434722 (2009g:76015), https://doi.org/10.2991/jnmp.2008.15.s2.2
  • [19] Robin Stanley Johnson, A modern introduction to the mathematical theory of water waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. MR 1629555 (99m:76017)
  • [20] Henrik Kalisch, Periodic traveling water waves with isobaric streamlines, J. Nonlinear Math. Phys. 11 (2004), no. 4, 461-471. MR 2097657 (2005m:35237), https://doi.org/10.2991/jnmp.2004.11.4.3
  • [21] James Lighthill, Waves in fluids, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2001. Reprint of the 1978 original. MR 1872073 (2002i:76001)
  • [22] Anca-Voichita Matioc, On particle trajectories in linear water waves, Nonlinear Anal. Real World Appl. 11 (2010), no. 5, 4275-4284. MR 2683875 (2012b:76019), https://doi.org/10.1016/j.nonrwa.2010.05.014
  • [23] Anca-Voichita Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A 45 (2012), no. 36, 365501, 10. MR 2967917, https://doi.org/10.1088/1751-8113/45/36/365501
  • [24] Anca-Voichita Matioc, An explicit solution for deep water waves with Coriolis effects, J. Nonlinear Math. Phys. 19 (2012), no. suppl. 1, 1240005, 8. MR 2999399, https://doi.org/10.1142/S1402925112400050
  • [25] Anca-Voichita Matioc, On particle trajectories in linear deep-water waves, Commun. Pure Appl. Anal. 11 (2012), no. 4, 1537-1547. MR 2900801, https://doi.org/10.3934/cpaa.2012.11.1537
  • [26] Bogdan-Vasile Matioc. Regularity results for deep-water waves with Hölder continuous vorticity. Appl. Anal. 92 (10) (2013), 2144-2151. DOI 10.1080/00036811.2012.718335. MR 3169153
  • [27] Bogdan-Vasile Matioc, On the regularity of deep-water waves with general vorticity distributions, Quart. Appl. Math. 70 (2012), no. 2, 393-405. MR 2953110, https://doi.org/10.1090/S0033-569X-2012-01261-1
  • [28] Anca-Voichita Matioc, An explicit solution for deep water waves with Coriolis effects, J. Nonlinear Math. Phys. 19 (2012), no. suppl. 1, 1240005, 8. MR 2999399, https://doi.org/10.1142/S1402925112400050
  • [29] Erik Mollo-Christiansen. Gravitational and geostrophic billows: Some exact solutions. J. Atmos. Sci, 35:1395-1398, 1978.
  • [30] Hisashi Okamoto and Mayumi Shōji, The mathematical theory of permanent progressive water-waves, Advanced Series in Nonlinear Dynamics, vol. 20, World Scientific Publishing Co. Inc., River Edge, NJ, 2001. MR 1869386 (2003h:76016)
  • [31] Joseph Pedlosky. Geophysical fluid dynamics. Springer, New York, 1979.
  • [32] W. J. M. Rankine. On the exact form of waves near the surface of fluids. Philos. Trans. R. Soc. Lond. A, 153:127-138, 1863.
  • [33] James J. Stoker, Water waves, Wiley Classics Library, John Wiley & Sons Inc., New York, 1992. The mathematical theory with applications; Reprint of the 1957 original; A Wiley-Interscience Publication. MR 1153414 (92m:76029)
  • [34] Raphael Stuhlmeier, On edge waves in stratified water along a sloping beach, J. Nonlinear Math. Phys. 18 (2011), no. 1, 127-137. MR 2786939 (2012g:76033), https://doi.org/10.1142/S1402925111001210
  • [35] John Francis Toland, Stokes waves, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 1-48. MR 1422004 (97j:35130)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 76B15, 74G05, 37N10

Retrieve articles in all journals with MSC (2010): 76B15, 74G05, 37N10


Additional Information

Anca-Voichita Matioc
Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Vienna, Austria
Email: anca.matioc@univie.ac.at

DOI: https://doi.org/10.1090/S0033-569X-2014-01337-5
Keywords: Gravity deep-water waves, Gerstner's wave, Coriolis effects, Lagrangian coordinates
Received by editor(s): June 22, 2012
Published electronically: April 23, 2014
Article copyright: © Copyright 2014 Brown University

American Mathematical Society