Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The quenching behavior of a semilinear heat equation with a singular boundary outflux


Authors: Burhan Selcuk and Nuri Ozalp
Journal: Quart. Appl. Math. 72 (2014), 747-752
MSC (2000): Primary 35K55, 35K60, 35B35, 35Q60
DOI: https://doi.org/10.1090/S0033-569X-2014-01367-9
Published electronically: September 26, 2014
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the quenching behavior of the solution of a semilinear heat equation with a singular boundary outflux. We prove a finite-time quenching for the solution. Further, we show that quenching occurs on the boundary under certain conditions and we show that the time derivative blows up at a quenching point. Finally, we get a quenching rate and a lower bound for the quenching time.


References [Enhancements On Off] (What's this?)

  • [1] C. Y. Chan, Recent advances in quenching phenomena, Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA, 1995), Dynamic, Atlanta, GA, 1996, pp. 107-113. MR 1419518 (98a:35065)
  • [2] C. Y. Chan, New results in quenching, World Congress of Nonlinear Analysts '92, Vol. I-IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, pp. 427-434. MR 1389093
  • [3] C. Y. Chan and X. O. Jiang, Quenching for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math. 62 (2004), no. 3, 553-568. MR 2086046 (2005e:35139)
  • [4] C. Y. Chan and N. Ozalp, Singular reaction-diffusion mixed boundary-value quenching problems, Dynamical systems and applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 127-137. MR 1372958 (97a:35109), https://doi.org/10.1142/9789812796417_0010
  • [5] C. Y. Chan and S. I. Yuen, Parabolic problems with nonlinear absorptions and releases at the boundaries, Appl. Math. Comput. 121 (2001), no. 2-3, 203-209. MR 1830870 (2002a:35121), https://doi.org/10.1016/S0096-3003(99)00278-7
  • [6] Keng Deng and Mingxi Xu, Quenching for a nonlinear diffusion equation with a singular boundary condition, Z. Angew. Math. Phys. 50 (1999), no. 4, 574-584. MR 1709705 (2000e:35110), https://doi.org/10.1007/s000330050167
  • [7] Keng Deng and Cheng-Lin Zhao, Blow-up versus quenching, Commun. Appl. Anal. 7 (2003), no. 1, 87-100. MR 1954906 (2003j:35170)
  • [8] Nadejda E. Dyakevich, Existence, uniqueness, and quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions, J. Math. Anal. Appl. 338 (2008), no. 2, 892-901. MR 2386469 (2009c:35223), https://doi.org/10.1016/j.jmaa.2007.05.077
  • [9] Marek Fila and Howard A. Levine, Quenching on the boundary, Nonlinear Anal. 21 (1993), no. 10, 795-802. MR 1246508 (95b:35028), https://doi.org/10.1016/0362-546X(93)90124-B
  • [10] Sheng-Chen Fu, Jong-Shenq Guo, and Je-Chiang Tsai, Blow-up behavior for a semilinear heat equation with a nonlinear boundary condition, Tohoku Math. J. (2) 55 (2003), no. 4, 565-581. MR 2017226 (2004h:35112)
  • [11] Hideo Kawarada, On solutions of initial-boundary problem for $ u_{t}=u_{xx}+1/(1-u)$, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 3, 729-736. MR 0385328 (52 #6192)
  • [12] L. Ke and S. Ning, Quenching for degenerate parabolic equations, Nonlinear Anal. 34 (1998), no. 7, 1123-1135. MR 1637229 (2000b:35138), https://doi.org/10.1016/S0362-546X(98)00039-X
  • [13] C. M. Kirk and Catherine A. Roberts, A quenching problem for the heat equation, J. Integral Equations Appl. 14 (2002), no. 1, 53-72. MR 1932536 (2003g:35129), https://doi.org/10.1216/jiea/1031315434
  • [14] C. M. Kirk and Catherine A. Roberts, A review of quenching results in the context of nonlinear Volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), no. 1-3, 343-356. Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems (London, ON, 2001). MR 1974255 (2004c:35216)
  • [15] W. E. Olmstead and Catherine A. Roberts, Critical speed for quenching, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), no. 1, 77-88. Advances in quenching. MR 1820667 (2002c:35159)
  • [16] Timo Salin, On quenching with logarithmic singularity, Nonlinear Anal. 52 (2003), no. 1, 261-289. MR 1938660 (2003j:35182), https://doi.org/10.1016/S0362-546X(02)00110-4
  • [17] Runzhang Xu, Chunyan Jin, Tao Yu, and Yacheng Liu, On quenching for some parabolic problems with combined power-type nonlinearities, Nonlinear Anal. Real World Appl. 13 (2012), no. 1, 333-339. MR 2846843 (2012i:35205), https://doi.org/10.1016/j.nonrwa.2011.07.040
  • [18] Ying Yang, Jingxue Yin, and Chunhua Jin, A quenching phenomenon for one-dimensional $ p$-Laplacian with singular boundary flux, Appl. Math. Lett. 23 (2010), no. 9, 955-959. MR 2659118 (2011f:35175), https://doi.org/10.1016/j.aml.2010.04.001
  • [19] Yuanhong Zhi and Chunlai Mu, The quenching behavior of a nonlinear parabolic equation with nonlinear boundary outflux, Appl. Math. Comput. 184 (2007), no. 2, 624-630. MR 2294876 (2007k:35249), https://doi.org/10.1016/j.amc.2006.06.061

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 35K55, 35K60, 35B35, 35Q60

Retrieve articles in all journals with MSC (2000): 35K55, 35K60, 35B35, 35Q60


Additional Information

Burhan Selcuk
Affiliation: Department of Computer Engineering, Karabuk University, Balıklarkayası Mevkii, 78050, Turkey
Email: bselcuk@karabuk.edu.tr

Nuri Ozalp
Affiliation: Department of Mathematics, Ankara University, Besevler, 06100, Turkey
Email: nozalp@science.ankara.edu.tr

DOI: https://doi.org/10.1090/S0033-569X-2014-01367-9
Keywords: Semilinear heat equation, singular boundary outflux, quenching, quenching point, quenching time, maximum principles.
Received by editor(s): November 28, 2012
Received by editor(s) in revised form: April 23, 2013
Published electronically: September 26, 2014
Article copyright: © Copyright 2014 Brown University

American Mathematical Society