Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Run-up amplification of transient long waves

Authors: Themistoklis S. Stefanakis, Shanshan Xu, Denys Dutykh and Frédéric Dias
Journal: Quart. Appl. Math. 73 (2015), 177-199
MSC (2010): Primary 76B15, 35Q35
DOI: https://doi.org/10.1090/S0033-569X-2015-01377-0
Published electronically: January 22, 2015
MathSciNet review: 3322730
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The extreme characteristics of the run-up of transient long waves are studied in this paper. First, we give a brief overview of the existing theory which is mainly based on the hodograph transformation (Carrier and Greenspan (1958)). Then, using numerical simulations, we build on the work of Stefanakis et al. (2011) for an infinite sloping beach and we find that resonant run-up amplification of monochromatic waves is robust to spectral perturbations of the incoming wave and that resonant regimes do exist for certain values of the frequency. In the canonical problem of a finite beach attached to a constant depth region, resonance can only be observed when the incoming wavelength is larger than the distance from the undisturbed shoreline to the seaward boundary. Wavefront steepness is also found to affect wave run-up, with steeper waves reaching higher run-up values.

References [Enhancements On Off] (What's this?)

  • [1] G. F. Carrier and H. P. Greenspan, Water waves of finite amplitude on a sloping beach, J. Fluid Mech. 4 (1958), 97–109. MR 0096462, https://doi.org/10.1017/S0022112058000331
  • [2] T. S. Stefanakis, F. Dias, and D. Dutykh,
    Local run-up amplification by resonant wave interactions, Phys. Rev. Lett., 107:124502, 2011.
  • [3] A. B. Rabinovich, I. Vilibic, and S. Tinti, Meteorological tsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band, Phys. Chem. Earth, 34:891 - 893, 2009.
  • [4] Costas E. Synolakis and Eddie N. Bernard, Tsunami science before and beyond Boxing Day 2004, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 364 (2006), no. 1845, 2231–2265. MR 2244672, https://doi.org/10.1098/rsta.2006.1824
  • [5] Y. Tsuji, F. Imamura, H. Matsutomi, C. Synolakis, P. Nanang, Jumadi, S. Harada, S. Han, K. Arai, and B. Cook, Field survey of the East Java earthquake and tsunami of June 3, 1994, Pure Appl. Geophys., 144:839-854, 1995.
  • [6] H. M. Fritz, W. Kongko, A. Moore, B. McAdoo, J. Goff, C. Harbitz, B. Uslu, N. Kalligeris, D. Suteja, K. Kalsum, V. V. Titov, A. Gusman, H. Latief, E. Santoso, S. Sujoko, D. Djulkarnaen, H. Sunendar, and C. Synolakis, Extreme runup from the 17 July 2006 Java tsunami, Geophys. Res. Lett., 34:L12602, 2007.
  • [7] H. Fritz, C. Petroff, P. Catalán, R. Cienfuegos, P. Winckler, N. Kalligeris, R. Weiss, S. Barrientos, G. Meneses, C. Valderas-Bermejo, C. Ebeling, A. Papadopoulos, M. Contreras, R. Almar, J. Dominguez, and C. Synolakis, Field survey of the 27 February 2010 Chile tsunami, Pure Appl. Geophys., 168:1989-2010, 2011.
  • [8] S. T. Grilli, J. C. Harris, T. S. Bakhsh, T. L. Masterlark, C. Kyriakopoulos, J. T. Kirby, and F. Shi, Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations, Pure Appl. Geophys., 170(6-8) 1333-1359, 2013.
  • [9] A. Ezersky, N. Abcha, and E. Pelinovsky, Physical simulation of resonant wave run-up on a beach, Nonlinear Proc. Geoph., 20(1):35-40, 2013.
  • [10] Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. MR 1317348
  • [11] J. W. Miles, Resonant response of harbours: an equivalent-circuit analysis, J. Fluid Mech., 46:241-265, 1971.
  • [12] D. G. Provis and R. Radok (eds.), Waves on water of variable depth, Australian Academy of Science, Canberra; Springer-Verlag, Berlin-New York, 1977. Lecture Notes in Physics, Vol. 64. MR 0475212
  • [13] Yehuda Agnon and Chiang C. Mei, Trapping and resonance of long shelf waves due to groups of short waves, J. Fluid Mech. 195 (1988), 201–221. MR 985437, https://doi.org/10.1017/S0022112088002381
  • [14] Géraldine L. Grataloup and Chiang C. Mei, Localization of harmonics generated in nonlinear shallow water waves, Phys. Rev. E (3) 68 (2003), no. 2, 026314, 9. MR 2010086, https://doi.org/10.1103/PhysRevE.68.026314
  • [15] W. Munk, F. Snodgrass, and F. Gilbert, Long waves on the continental shelf: an experiment to separate trapped and leaky modes, J. Fluid Mech., 20:529-554, 1964.
  • [16] A. B. Rabinovich and A. S. Leviant, Influence of seiche oscillations on the formation of the long-wave spectrum near the coast of the Southern Kuriles, Oceanology, 32:17-23, 1992.
  • [17] U. Kânoğlu, V. Titov, B. Aydın, C. Moore, T. S. Stefanakis, H. Zhou, M. Spillane, and C. Synolakis, Focusing of long waves with finite crest over constant depth, Proc. R. Soc. A, 469(2153), 2013.
  • [18] P. Bruun and A. R. Günbak, Stability of sloping structures in relation to $ \xi $= tan$ \alpha $/ $ \sqrt { H/L_0}$ risk criteria in design, Coast. Eng., 1:287 - 322, 1977.
  • [19] J. B. Keller and H. B. Keller, Water wave run-up on a beach, Technical report, Department of the Navy, Washington, DC, 1964.
  • [20] George F. Carrier, Gravity waves on water of variable depth, J. Fluid Mech. 24 (1966), 641–659. MR 0200009, https://doi.org/10.1017/S0022112066000892
  • [21] C. Synolakis, The runup of solitary waves, J. Fluid Mech., 185:523-545, 1987.
  • [22] S. Tadepalli and C. Synolakis, The run-up of N-waves on sloping beaches, Proc. R. Soc. Lond. A, 445:99-112, 1994.
  • [23] M. Brocchini and D. H. Peregrine, Integral flow properties of the swash zone and averaging, J. Fluid Mech, 317:241-273, 1996.
  • [24] U. Kânoğlu and C. Synolakis, Initial value problem solution of nonlinear shallow water-wave equations, Phys. Rev. Lett., 97:148501, 2006.
  • [25] Matteo Antuono and Maurizio Brocchini, The boundary value problem for the nonlinear shallow water equations, Stud. Appl. Math. 119 (2007), no. 1, 73–93. MR 2324442, https://doi.org/10.1111/j.1365-2966.2007.00378.x
  • [26] P. A. Madsen and D. R. Fuhrman, Run-up of tsunamis and long waves in terms of surf-similarity, Coastal Engineering, 55:209 - 223, 2008.
  • [27] P. A. Madsen, D. R. Fuhrman, and H. A. Schaffer, On the solitary wave paradigm for tsunamis, J. Geophys. Res., 113(C12), 2008.
  • [28] George F. Carrier, Tai Tei Wu, and Harry Yeh, Tsunami run-up and draw-down on a plane beach, J. Fluid Mech. 475 (2003), 79–99. MR 2012495, https://doi.org/10.1017/S0022112002002653
  • [29] S. Tadepalli and C. E. Synolakis, Model for the leading waves of tsunamis, Phys. Rev. Lett., 77:2141-2144, 1996.
  • [30] Costas Emmanuel Synolakis, On the roots of 𝑓(𝑧)=𝐽₀(𝑧)-𝑖𝐽₁(𝑧), Quart. Appl. Math. 46 (1988), no. 1, 105–107. MR 934685, https://doi.org/10.1090/S0033-569X-1988-0934685-0
  • [31] J. Billingham and A. C. King, Wave motion, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2000. MR 1811404
  • [32] Jean-Michel Ghidaglia and Frédéric Pascal, The normal flux method at the boundary for multidimensional finite volume approximations in CFD, Eur. J. Mech. B Fluids 24 (2005), no. 1, 1–17. MR 2102914, https://doi.org/10.1016/j.euromechflu.2004.05.003
  • [33] Denys Dutykh, Theodoros Katsaounis, and Dimitrios Mitsotakis, Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys. 230 (2011), no. 8, 3035–3061. MR 2774329, https://doi.org/10.1016/j.jcp.2011.01.003
  • [34] Denys Dutykh, Raphaël Poncet, and Frédéric Dias, The VOLNA code for the numerical modeling of tsunami waves: generation, propagation and inundation, Eur. J. Mech. B Fluids 30 (2011), no. 6, 598–615. MR 2906226, https://doi.org/10.1016/j.euromechflu.2011.05.005
  • [35] C. Synolakis, E. Bernard, V. Titov, U. Kanoglu, and F. Gonzalez, Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models, Technical report, NOAA/Pacific Marine Environmental Laboratory, 2007.
  • [36] Utku Kânoğlu and Costas Emmanuel Synolakis, Long wave runup on piecewise linear topographies, J. Fluid Mech. 374 (1998), 1–28. MR 1660967, https://doi.org/10.1017/S0022112098002468
  • [37] S. Mayer, A. Garapon, and L. S. Soerensen, A fractional step method for unsteady free-surface flow with applications to non-linear wave dynamics, Int. J. Num. Meth. Fl., 28:293-315, 1998.
  • [38] P. A. Madsen, H. B. Bingham, and Hua Liu, A new Boussinesq method for fully nonlinear waves from shallow to deep water, J. Fluid Mech. 462 (2002), 1–30. MR 1919980, https://doi.org/10.1017/S0022112002008467
  • [39] Y. Lu, H. Liu, W. Wu, and J. Zhang, Numerical simulation of two-dimensional overtopping against seawalls armored with artificial units in regular waves, J. Hydrodyn. Ser. B, 19(3):322 - 329, 2007.
  • [40] E. N. Pelinovsky and R. K. Mazova, Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles, Nat. Hazards, 6:227-249, 1992.
  • [41] C. C. Mei, M. Stiassnie, and D. Yue, Theory and applications of ocean surface waves, In Advanced Series on Ocean Engineering, vol. 23, World Scientific, Singapore, 2005.
  • [42] M. Kazolea, A. I. Delis, I. K. Nikolos, and C. E. Synolakis, An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coastal Engineering, 69:42-66, 2012.
  • [43] F. Shi, J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli, A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation, Ocean Modelling, 43-44:36 - 51, 2012.
  • [44] M. Tissier, P. Bonneton, F. Marche, F. Chazel, and D. Lannes, A new approach to handle wave breaking in fully non-linear Boussinesq models, Coastal Engineering, 67:54-66, 2012.
  • [45] J. P. Ahrens, Irregular wave runup on smooth slope, CETA No. 81-17. U.S. Army Corps of Engineers, Coastal Engineering Research Center, FT. Belvoir, VA, 1981.
  • [46] C. Synolakis and J. Skjelbreia, Evolution of maximum amplitude of solitary waves on plane beaches, J. Waterw. Harbors Port Coastal Ocean Eng., 119(3):323-342, 1993.
  • [47] P. Bruun and P. Johannesson,A critical review of the hydraulics of rubble mound structures, Technical report, The Norwegian Institute of Technology, Trondheim, 1974.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 76B15, 35Q35

Retrieve articles in all journals with MSC (2010): 76B15, 35Q35

Additional Information

Themistoklis S. Stefanakis
Affiliation: CMLA, ENS Cachan, CNRS, 61 Avenue du Président Wilson, F-94230 Cachan, France – and – UCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
Email: stefanakis.themistoklis@gmail.com

Shanshan Xu
Affiliation: UCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
Email: shanshan.xu@ucdconnect.ie

Denys Dutykh
Affiliation: UCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland – and – Université de Savoie-CNRS Laboratoire de Mathématiques LAMA - UMR, 5127 Campus Scientifique, 73376 Le Bourget-du-Lac, France
Email: Denys.Dutykh@univ.savoie.fr

Frédéric Dias
Affiliation: UCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland – and – CMLA, ENS Cachan, CNRS, 61 Avenue du Président Wilson, F-94230 Cachan, France
Email: frederic.dias@ucd.ie

DOI: https://doi.org/10.1090/S0033-569X-2015-01377-0
Received by editor(s): May 13, 2013
Published electronically: January 22, 2015
Article copyright: © Copyright 2015 Brown University

American Mathematical Society