Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Exploring the role of host-tumor interactions in tumor growth and regression


Authors: William C. Troy and Stewart J. Anderson
Journal: Quart. Appl. Math. 73 (2015), 131-161
MSC (2010): Primary 82B10
DOI: https://doi.org/10.1090/S0033-569X-2015-01385-X
Published electronically: January 21, 2015
MathSciNet review: 3322728
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the last 35 years the characterization of tumor growth using Gompertzian models has led to a new understanding of the spread of tumor cells, and has enabled researchers to develop novel therapeutic strategies to eradicate disease in some cases (see Ciron et al. (2003), Norton et al. (1976), Norton and Simon (1986), and Simon and Norton (2006)). A long standing assertion is that the Gompertzian framework does not allow characterizations of complex biological and clinical phenomena such as tumor regression and dormancy (see Retsky et al. (1998)). We propose a generalized Gompertzian system of delay-differential equations to study host-tumor interaction effects in the absence of external therapy. Our model is a parsimonious extension of the Norton et al. (1976) model: $ N(t)$ denotes tumor volume, $ G(t)$ represents host-tumor interactions, $ N'(t)=K_{1}N(t)G(t)$ and $ G'(t)=-K_{2}G(t-\tau ),$ and $ \tau \ge 0$ represents time of response of the host to the presence of tumor cells. The first step is to set $ G(t)= \exp (\lambda t)$ and study $ \lambda = K_{2}\exp (\lambda \tau ).$ Setting $ \lambda =\alpha (\tau )+{\rm i}\beta (\tau ),$ we derive ODEs satisfied by $ \alpha (\tau ),$ $ \beta (\tau ), $ and prove existence and qualitative properties of infinitely many branches of solutions. Therefore, $ G(t)=\sum _{j \in I_{1}} c_{j}\exp \left (\alpha _{j}(\tau )t \right )\cos \le... ...\exp \left (\alpha _{k}(\tau )t \right )\sin \left (\beta _{k}(\tau )t\right ),$ where $ \exp \left (\alpha _{j}(\tau )t \right )\cos \left (\beta _{j}(\tau )t\right ),$ $ \exp \left (\alpha _{k}(\tau )t \right )\sin \left (\beta _{k}(\tau )t\right )$ are eigenfunctions. Substituting $ G(t)$ into the $ N(t)$ ODE, we: (I) identify an ``optimal immunological response'' range $ \tau >0$ where host-tumor interactions can cause a tumor to remain dormant, or regress from growth state into dormancy, and (II) replicate observed tumor growth in mammograms of 32 breast cancer patients.


References [Enhancements On Off] (What's this?)

  • [1] Kenneth L. Cooke, Differential-difference equations, Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, pp. 155–171. MR 0146481
  • [2] M. L. Ciron, D. A. Barry, C. Cirrincione, C. Hudis, E. P. Winer, W. J, Gradishar, N. E. Davidson, S. Martino, R. Livingston, J. N. Ingle, E. A. Perez, J. Carpenter, D. Hurd, J. F. Holland, B. L. Smith, C. I. Sartor, E. H. Leung, J. Abrams, R. L. Schilsky, H. B. Muss & L. Norton, Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncology 21 (2003), pp. 1431-1439.
  • [3] R. Demichelli, Growth of testicular-neoplasm lung metastases: tumor specific relation between two Gompertzian parameters, Eur. J. Cancer 16 (1980), pp. 1603-1608.
  • [4] R. Demichelli, M.W. Retsky, W.J.M. Hrushesky, M. Baum and I.D. Gukas, The effect of surgery on tumor growth: a century of investigations, Annals of Oncology 19 (2008), pp. 1821-1828.
  • [5] R. Demichelli, M.W. Retsky, D. E. Swartzendruber and G. Bonadonna, Proposal for a new model of breast cancer metastatic development, Annals of Oncology 8 (1997), pp. 1075-1080.
  • [6] Odo Diekmann, Stephan A. van Gils, Sjoerd M. Verduyn Lunel, and Hans-Otto Walther, Delay equations, Applied Mathematical Sciences, vol. 110, Springer-Verlag, New York, 1995. Functional, complex, and nonlinear analysis. MR 1345150
  • [7] Alberto d’Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences, Phys. D 208 (2005), no. 3-4, 220–235. MR 2167609, https://doi.org/10.1016/j.physd.2005.06.032
  • [8] L. Esserman, Y. Shieh & I. Thompson, Rethinking screening for breast cancer and prostate cancer, JAMA 302 (5) (2009), pp. 1685-1692.
  • [9] B. Fisher, Laboratory and clinical research in breast cancer-a personal adventure: the David A. Karnofsky lecture, Cancer Research 10 (1980), pp. 3863-3874.
  • [10] B. Fisher & E. R. Fisher, Experimental evidence in support of the dormant tumor cell, Science 130 (1959), pp. 918-919.
  • [11] B. Fisher, E. Montague, C. Redmund, B. Barton, D. Borland, E. R. Fisher, M. Deutsch, G. Schwarz, R. Margolese, W. Donegan, H. Volk, C. Konvolinka, B. Gardner, I. Cohn, Jr., G. Lesnick, A. B. Cruz, W. Lawrence, T. Nealon, H. Butcher & R. Lawton, Comparison of radical mastectomy with alternative treatments for primary breast cancer: a first report of results from a prospective randomized trial, Cancer (1977) June 39 (6 Suppl), pp. 2827-2839.
  • [12] B. Fisher, J. H. Jeong, S. Anderson, J. Bryant, E. R. Fisher & N. Wolmark, Twenty-five-year follow-up of a randomized trial comparing total mastectomy with or without radiation in the treatment of breast cancer, The New England Journal of Medicine 347 (8) (2002), pp. 567-575.
  • [13] B. Fisher, M. Bauer, R. Margolese, R. Poisson, Y. Pilch, C. Redmond, E. Fisher, N. Wolmark, M. Deutsch, E. Montague, et al., Five-year results of a randomized clinical trial comparing total mastectomy and segmental mastectomy with or without radiation in the treatment of breast cancer, The New England Journal of Medicine 312 (11) (1985), pp. 665-673.
  • [14] B. Fisher, S. Anderson, J. Bryant, R. G. Margolese, M. Deutsch, E. R. Fisher, J. H. Jeong & N. Wolmark, Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer, The New England Journal of Medicine 347 (16) (2002), pp. 1233-1241.
  • [15] B. Fisher & S. Anderson, The breast cancer alternative hypothesis: is there evidence to justify replacing it? Journal of Clinical Oncology 28 (3) (2009), pp. 366-374.
  • [16] B. Fisher, The present status of tumor immunology, Advances in Surgery, Welch and Hardy, Editors, 5 (1971), pp. 189-254.
  • [17] R. I. Fischer, V. T. Devita & B. P. Hubbard, Prolonged disease free survival in Hodgkin's disease with MOPP reinduction after first relapse, Ann. Int. Medicine 90 (1979), pp. 761-763.
  • [18] M. A. Gimbrone, S. B. Leapman, R. S. Cotran & J. Folkman, Tumor dormancy in vivo by prevention of neovascularization, The Journal of Experimental Medicine 136 (1972), pp. 261-276.
  • [19] L. Glass & M. C. Mackey, Oscillations and chaos in physiological control systems, Science 197 (1977), pp. 287-289.
  • [20] B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Phil. Trans. Roy. Soc. (1825), pp. 513-585.
  • [21] M. Greenblatt & P. Shubik, Tumor angiogenesis: trans filter diffusion studies by the transparent chamber technique, J. Natl. Cancer Inst. 41 (1968), pp. 111-124.
  • [22] L. Heuser, J. Spratt & H. Polk, Growth rates of primary breast cancers, Cancer 43, No. 5 (1979), pp. 1888-1894.
  • [23] D. J. Jeffrey, D. E. G. Hare, and Robert M. Corless, Unwinding the branches of the Lambert 𝑊 function, Math. Sci. 21 (1996), no. 1, 1–7. MR 1390696
  • [24] R. M. Kaplan and F. Porzsolt, The natural history of breast cancer, Arch. Intern. Med, 168 (21) (2008), pp. 2302-2303.
  • [25] T. G. Karrison, D. J. Ferguson and P. Meier, Dormancy of mammary carcinoma after mastectomy, J. Natl. Cancer Inst. 91 (1) (1999), pp. 3308-3315.
  • [26] D. N. Krag, S. J. Anderson, T. B Julian et al., Sentinel-lymph node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomized phase 3 trial, The Lancet Oncology 11 (10) (2010), pp. 927-933.
  • [27] A. K. Laird, Dynamics of tumor growth, Br. J. of Cancer 18 (1964), pp. 490-502.
  • [28] A. K Laird, Dynamics of growth in tumors and normal organisms, Nat. Can. Inst. Monogr. 39 (1969), pp. 15-28.
  • [29] B. G. Leventhal, A. S. Levine, & R. G. Graw, Long term second remissions in acute lymphatic leukemia, Cancer 35 (1975), pp. 1136-1140.
  • [30] S. S. McAlister & R. Weinberg, Tumor-host interactions: a far reaching relationship, Journal of Clinical Oncology 28(26) (2010), pp. 4022-4028.
  • [31] S. Meng, D. Tripathy, E. P. Frenkel, S. Shete, E. Z. Naftalis, J. F. Huth, P. D. Beitsch, M. Leitch, S. Hoover, D. Euhus, B. Haley, L. Morrison, T. P. Fleming, D. Herlyn, L. W. Terstappen, T. Fehm, T. F. Tucker, N. Lane, J. Wang, J. W. Uhr, Circulating tumor cells in patients with breast cancer dormancy, Clinical Cancer Res. 10(24) (2004), pp. 8152-8162.
  • [32] L. Norton R. Simon, H. Brereton & A. Bogden, Predicting the course of Gompertzian growth, Nature 264 (1976), pp. 542-544.
  • [33] L. Norton & R. Simon, Tumor size, sensitivity to therapy and the design of treatment protocols, Cancer Treat. Rep. 61 (1976), pp. 1307-1317.
  • [34] L. Norton & R. Simon, The growth curve of an experimental solid tumor following radiotherapy, J. Nat. Cancer Inst. 58 (1977), pp. 1735-1741.
  • [35] L. Norton & R. Simon, The Norton-Simon hypothesis revisited, Cancer Treat. Rep. 70 (1986), pp. 163-169.
  • [36] Tiffany O'Callaghan, The cruellest cut, New Scientist, 214, Issue 2870 (2012), pp. 42-44.
  • [37] C. F. J. M. Peeters, R. M. W. de Waal, T. Wobbes & T. J. M. Ruers, Metastatic dormancy imposed by the primary tumor: does it exist in humans? Annals of Surg. Oncol. 15 (11) (2008), pp. 3308-3315.
  • [38] M. W. Retsky, D. E. Swartzendruber, R. H. Wardwel & P. D. Bame, Is Gompertzian or exponential kinetics a valid description of individual human cancer growth? Medical Hypotheses 33 (1998), pp. 95-106.
  • [39] H. E. Skipper, F. M. Schabel, Jr. & W. S. Wilcox, Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with `curability' of experimental leukemia, Cancer Chemoth. Rep. 35 (1964), pp. 1-111.
  • [40] R. Simon & L. Norton, The Norton-Simon hypothesis: designing more effective and less toxic chemotherapuetic regimens, Nature Clinical Practice Oncology 3 (2006), pp. 406-407.
  • [41] J. F. Speer, V. E. Petrovsky, M. W. Retsky & R. H. Wardwell, A stochastic numerical model of breast cancer growth that simulates clinical data, Cancer Research 44 (1984), pp. 4124-4130.
  • [42] W. C. Sumner & A. G. Foraker, Spontaneous regression of human melanoma: clinical and experimental studies, Cancer 13 (1960) 79-81.
  • [43] P. W. Sullivan & S. E. Salmon, Kinetics of tumor growth and regression in IgG multiple myeloma, J. Clin. Inv. 51 (1972), pp. 1607-1708.
  • [44] U. Veronesi, R. Saccozzi, M. Del Vecchio et al., Comparing radical mastectomy with quadrantectomy, auxiliary dissection and radiotherapy in patients with small cancers of the breast, New England Journal of Medicine 305 (1981), pp. 6-11.
  • [45] U. Veronesi, N. Casctinelli, L. Mariani et al., Twenty year follow-up of a randomized study comparing breast-conserving surgery with radical (Halstead) mastectomy for early breast cancer, New England Journal of Medicine 347 (1981), pp. 1227-1232.
  • [46] P. H. Zahl, J. Mœhlen, H. G. Welch, The natural history of invasive breast cancers detected by screening mammography, Arch. Intern Med, 168 (21) (2008), pp. 2311-2316.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 82B10

Retrieve articles in all journals with MSC (2010): 82B10


Additional Information

William C. Troy
Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email: troy@math.pitt.edu

Stewart J. Anderson
Affiliation: Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 312 Parran Hall, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261
Email: sja@pitt.edu

DOI: https://doi.org/10.1090/S0033-569X-2015-01385-X
Received by editor(s): March 2, 2013
Published electronically: January 21, 2015
Article copyright: © Copyright 2015 Brown University


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website