Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Global existence and energy decay of a nondissipative Cauchy viscoelastic problem


Authors: Mohammad Kafini and Muhammad I. Mustafa
Journal: Quart. Appl. Math. 73 (2015), 739-757
MSC (2010): Primary 35B05, 35L05, 35L15, 35L70
DOI: https://doi.org/10.1090/qam/1420
Published electronically: September 11, 2015
MathSciNet review: 3432281
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Wei Zhuang and Guitong Yang, Propagation of solitary waves in the nonlinear rods, Appl. Math. Mech. 7 (1986), 571-581.
  • [2] Xiangying Chen and Guowang Chen, Asymptotic behavior and blow-up of solutions to a nonlinear evolution equation of fourth order, Nonlinear Anal. 68 (2008), no. 4, 892-904. MR 2382305 (2009c:35393), https://doi.org/10.1016/j.na.2006.11.045
  • [3] Mauro Fabrizio and Angelo Morro, Mathematical problems in linear viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1153021 (93a:73034)
  • [4] Michael Renardy, William J. Hrusa, and John A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR 919738 (89b:35134)
  • [5] Vladimir Georgiev and Grozdena Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations 109 (1994), no. 2, 295-308. MR 1273304 (95b:35141), https://doi.org/10.1006/jdeq.1994.1051
  • [6] Ryo Ikehata, Yasuaki Miyaoka, and Takashi Nakatake, Decay estimates of solutions for dissipative wave equations in $ \mathbf {R}^N$ with lower power nonlinearities, J. Math. Soc. Japan 56 (2004), no. 2, 365-373. MR 2048464 (2005b:35190), https://doi.org/10.2969/jmsj/1191418635
  • [7] Salim A. Messaoudi, Blow up in the Cauchy problem for a nonlinearly damped wave equation, Commun. Appl. Anal. 7 (2003), no. 2-3, 379-386. MR 1986245 (2004e:35154)
  • [8] Grozdena Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 2, 191-196 (English, with English and French summaries). MR 1646932 (99e:35154), https://doi.org/10.1016/S0764-4442(97)89469-4
  • [9] Grozdena Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, J. Math. Anal. Appl. 239 (1999), no. 2, 213-226. MR 1723057 (2000k:35204), https://doi.org/10.1006/jmaa.1999.6528
  • [10] Grozdena Todorova and Borislav Yordanov, The energy decay problem for wave equations with nonlinear dissipative terms in $ \mathbb{R}^n$, Indiana Univ. Math. J. 56 (2007), no. 1, 389-416. MR 2305940 (2008c:35205), https://doi.org/10.1512/iumj.2007.56.2963
  • [11] W. J. Hrusa and J. A. Nohel, The Cauchy problem in one-dimensional nonlinear viscoelasticity, J. Differential Equations 59 (1985), no. 3, 388-412. MR 807854 (87a:73030), https://doi.org/10.1016/0022-0396(85)90147-0
  • [12] George Dassios and Filareti Zafiropoulos, Equipartition of energy in linearized $ 3$-D viscoelasticity, Quart. Appl. Math. 48 (1990), no. 4, 715-730. MR 1079915 (92e:73021)
  • [13] Jaime E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math. 52 (1994), no. 4, 628-648. MR 1306041 (95j:73052)
  • [14] C. M. Dafermos, Development of singularities in the motion of materials with fading memory, Arch. Rational Mech. Anal. 91 (1985), no. 3, 193-205. MR 806001 (87a:73033), https://doi.org/10.1007/BF00250741
  • [15] Mohammad Kafini and Salim A. Messaoudi, A blow-up result in a Cauchy viscoelastic problem, Appl. Math. Lett. 21 (2008), no. 6, 549-553. MR 2412376 (2009e:35186), https://doi.org/10.1016/j.aml.2007.07.004
  • [16] Mohammad Kafini and Salim A. Messaoudi, A blow-up result for a viscoelastic system in $ \mathbb{R}^n$, Electron. J. Differential Equations (2007), No. 113, 7 pp. (electronic). MR 2349941 (2008f:35391)
  • [17] Mohammad Kafini and Salim A. Messaoudi, On the uniform decay in viscoelastic problems in $ \mathbb{R}^n$, Appl. Math. Comput. 215 (2009), no. 3, 1161-1169. MR 2568974, https://doi.org/10.1016/j.amc.2009.06.058
  • [18] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential Integral Equations 14 (2001), no. 1, 85-116. MR 1797934 (2001m:35201)
  • [19] Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, and Juan A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations (2002), No. 44, 14. MR 1907720 (2003c:35116)
  • [20] Marcelo Moreira Cavalcanti and Higidio Portillo Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42 (2003), no. 4, 1310-1324 (electronic). MR 2044797 (2005d:35257), https://doi.org/10.1137/S0363012902408010
  • [21] Khaled M. Furati and Nasser-eddine Tatar, Uniform boundedness and stability for a viscoelastic problem, Appl. Math. Comput. 167 (2005), no. 2, 1211-1220. MR 2169762 (2006d:35284), https://doi.org/10.1016/j.amc.2004.08.036
  • [22] Mohamed Medjden and Nasser-eddine Tatar, On the wave equation with a temporal non-local term, Dynam. Systems Appl. 16 (2007), no. 4, 665-671. MR 2370149 (2008k:35295)
  • [23] Nasser-eddine Tatar, On a problem arising in isothermal viscoelasticity, Int. J. Pure Appl. Math. 8 (2003), no. 1, 1-12. MR 1993399 (2004d:35243)
  • [24] Salim A. Messaoudi and Nasser-eddine Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr. 282 (2009), no. 10, 1443-1450. MR 2571706 (2011a:35354), https://doi.org/10.1002/mana.200610800
  • [25] Nasser-eddine Tatar, Exponential decay for a viscoelastic problem with a singular kernel, Z. Angew. Math. Phys. 60 (2009), no. 4, 640-650. MR 2520604 (2010m:35519), https://doi.org/10.1007/s00033-008-8030-1
  • [26] W. J. Hrusa and M. Renardy, On a class of quasilinear partial integro-differential equations with singular kernels, J. Differential Equations 64 (1986), no. 2, 195-220. MR 851911 (88c:45010), https://doi.org/10.1016/0022-0396(86)90087-2
  • [27] William J. Hrusa and Michael Renardy, A model equation for viscoelasticity with a strongly singular kernel, SIAM J. Math. Anal. 19 (1988), no. 2, 257-269. MR 930025 (89d:35159), https://doi.org/10.1137/0519019
  • [28] M. Aassila, M. M. Cavalcanti, and V. N. Domingos Cavalcanti, Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term, Calc. Var. Partial Differential Equations 15 (2002), no. 2, 155-180. MR 1930245 (2003j:35216), https://doi.org/10.1007/s005260100096
  • [29] M. M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, Differential Integral Equations 18 (2005), no. 5, 583-600. MR 2136980 (2006b:35224)
  • [30] Mohammed Aassila and Marcelo M. Cavalcanti, On nonlinear hyperbolic problems with nonlinear boundary feedback, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), no. 4, 521-540. MR 1806933 (2002c:35184)
  • [31] Haïm Brezis, Analyse fonctionnelle, Théorie et applications. [Theory and applications], Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983 (French). MR 697382 (85a:46001)
  • [32] J. A. Oguntuase, On integral inequalities of Gronwall-Bellman-Bihari type in several variables, JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), no. 2, Article 20, 7 pp. (electronic). MR 1786407 (2001g:26023)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 35B05, 35L05, 35L15, 35L70

Retrieve articles in all journals with MSC (2010): 35B05, 35L05, 35L15, 35L70


Additional Information

Mohammad Kafini
Affiliation: Department of Mathematics and Statistics, KFUPM, Dhahran 31261, Saudi Arabia
Email: mkafini@kfupm.edu.sa

Muhammad I. Mustafa
Affiliation: Department of Mathematics and Statistics, KFUPM, Dhahran 31261, Saudi Arabia
Email: mmustafa@kfupm.edu.sa

DOI: https://doi.org/10.1090/qam/1420
Keywords: Polynomial decay, Cauchy problem, global existence, nondissipative viscoelastic problem
Received by editor(s): April 3, 2014
Received by editor(s) in revised form: October 14, 2014
Published electronically: September 11, 2015
Article copyright: © Copyright 2015 Brown University

American Mathematical Society