Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Homogenization of elliptic systems with periodic coefficients: Weighted $L^p$ and $L^{\infty }$ estimates for asymptotic remainders
HTML articles powered by AMS MathViewer

by S. A. Nazarov
Translated by: A. Plotkin
St. Petersburg Math. J. 18 (2007), 269-304
DOI: https://doi.org/10.1090/S1061-0022-07-00951-X
Published electronically: March 19, 2007

Abstract:

The difference between the fundamental matrix for a second order selfadjoint elliptic system with sufficiently smooth periodic coefficients and the fundamental matrix for the corresponding homogenized system in $\mathbb R^n$ is shown to decay as $O(1+|x|^{1-n}$) at infinity, $n\ge 2$. As a consequence, weighted $L^p$ and $L^{\infty }$ estimates are obtained for the difference $u^{\varepsilon }-u^0$ of the solutions of a system with rapidly oscillating periodic coefficients and the homogenized system in $\mathbb R^n$ with right-hand side belonging to an appropriate weighted $L^p$-class in $\mathbb R^n$.
References
  • Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
  • S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5(329), 77–142 (Russian); English transl., Russian Math. Surveys 54 (1999), no. 5, 947–1014. MR 1741662, DOI 10.1070/rm1999v054n05ABEH000204
  • —, Asymptotic theory of thin plates and rods. Dimension reduction and integral estimates. Vol. 1, “Nauchn. Kniga”, Novosibirsk, 2002. (Russian).
  • Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
  • N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media, Mathematics and its Applications (Soviet Series), vol. 36, Kluwer Academic Publishers Group, Dordrecht, 1989. Mathematical problems in the mechanics of composite materials; Translated from the Russian by D. Leĭtes. MR 1112788, DOI 10.1007/978-94-009-2247-1
  • Enrique Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin-New York, 1980. MR 578345
  • V. V. Zhikov, S. M. Kozlov, and O. A. Oleĭnik, Usrednenie differentsial′nykh operatorov, “Nauka”, Moscow, 1993 (Russian, with English and Russian summaries). MR 1318242
  • O. A. Oleĭnik, G. A. Iosif′yan, and A. S. Shamaev, Matematicheskie zadachi teorii sil′no neodnorodnykh uprugikh sred, Moskov. Gos. Univ., Moscow, 1990 (Russian). MR 1115306
  • O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoĭ fiziki, Izdat. “Nauka”, Moscow, 1973 (Russian). MR 0599579
  • S. A. Nazarov, Asymptotic expansion of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle, Mat. Sb. 182 (1991), no. 5, 692–722 (Russian); English transl., Math. USSR-Sb. 73 (1992), no. 1, 79–110. MR 1124104, DOI 10.1070/SM1992v073n01ABEH002536
  • Michael Birman and Tatyana Suslina, Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71–107. MR 1882692
  • M. Sh. Birman and T. A. Suslina, Periodic second-order differential operators. Threshold properties and averaging, Algebra i Analiz 15 (2003), no. 5, 1–108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639–714. MR 2068790, DOI 10.1090/S1061-0022-04-00827-1
  • V. V. Zhikov, On operator estimates in homogenization theory, Dokl. Akad. Nauk 403 (2005), no. 3, 305–308 (Russian). MR 2164541
  • V. V. Zhikov, On the spectral method in homogenization theory, Tr. Mat. Inst. Steklova 250 (2005), no. Differ. Uravn. i Din. Sist., 95–104 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(250) (2005), 85–94. MR 2200910
  • R. A. Adams and J. J. F. Fournier, Sobolev spaces, Elsevier Science, Ltd., Amsterdam, 2003.
  • E. V. Sevost′yanova, Asymptotic expansion of the solution of a second-order elliptic equation with periodic rapidly oscillating coefficients, Mat. Sb. (N.S.) 115(157) (1981), no. 2, 204–222, 319 (Russian). MR 622145
  • Sergei A. Nazarov, Asymptotics at infinity of the solution to the Dirichlet problem for a system of equations with periodic coefficients in an angular domain, Russian J. Math. Phys. 3 (1995), no. 3, 297–326. MR 1370627
  • S. A. Nazarov and G. Thäter, Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer, C.R. Mecanique 331 (2003), 85–90.
  • Sergueï A. Nazarov and Gudrun Thäter, Neumann problem in a perforated layer (sieve), Asymptot. Anal. 44 (2005), no. 3-4, 259–298. MR 2176275
  • S. A. Nazarov and A. S. Slutskiĭ, Asymptotic behavior of solutions of boundary value problems for an equation with rapidly oscillating coefficients in a domain with a small cavity, Mat. Sb. 189 (1998), no. 9, 107–142 (Russian, with Russian summary); English transl., Sb. Math. 189 (1998), no. 9-10, 1385–1422. MR 1680848, DOI 10.1070/SM1998v189n09ABEH000353
  • I. M. Gel′fand and G. E. Šilov, Obobshchennye funksii i deĭ stviya iad nimi, Obobščennye funkcii, Vypusk 1. [Generalized functions, part 1], Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958 (Russian). MR 0097715
  • E. M. Stein and Guido Weiss, Fractional integrals on $n$-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503–514. MR 0098285, DOI 10.1512/iumj.1958.7.57030
  • Robert C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), no. 6, 783–795. MR 539158, DOI 10.1002/cpa.3160320604
  • S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35–92. MR 162050, DOI 10.1002/cpa.3160170104
  • V. A. Solonnikov, General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. I, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 665–706 (Russian). MR 0211070
  • V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 0226187
  • V. G. Maz′ja and B. A. Plamenevskiĭ, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, Elliptische Differentialgleichungen (Meeting, Rostock, 1977) Wilhelm-Pieck-Univ., Rostock, 1978, pp. 161–190 (Russian). MR 540196
  • S. A. Nazarov, The Vishik-Lyusternik method for elliptic boundary value problems in regions with conic points. I. Problem in a cone, Sibirsk. Mat. Zh. 22 (1981), no. 4, 142–163, 231 (Russian). MR 624412
  • S. A. Nazarov, On the water flow under a lying stone, Mat. Sb. 186 (1995), no. 11, 75–110 (Russian, with Russian summary); English transl., Sb. Math. 186 (1995), no. 11, 1621–1658. MR 1368787, DOI 10.1070/SM1995v186n11ABEH000086
  • Serguei A. Nazarov, Asymptotics of the solution to the Neumann problem in a domain with singular point of peak exterior type, Russian J. Math. Phys. 4 (1996), no. 2, 217–250. MR 1414884
  • S. A. Nazarov, Asymptotic expansions at infinity of solutions of a problem in the theory of elasticity in a layer, Tr. Mosk. Mat. Obs. 60 (1999), 3–97 (Russian, with Russian summary); English transl., Trans. Moscow Math. Soc. (1999), 1–85. MR 1702684
  • A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational Mech. Anal. 24 (1967), 193–218. MR 209618, DOI 10.1007/BF00281343
  • Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
  • V. G. Maz′ja and B. A. Plamenevskiĭ, The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points, Math. Nachr. 76 (1977), 29–60 (Russian). MR 601608, DOI 10.1002/mana.19770760103
  • V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, 1997. MR 1469972, DOI 10.1090/surv/052
  • V. G. Maz′ja and B. A. Plamenevskiĭ, Estimates in $L_{p}$ and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary, Math. Nachr. 81 (1978), 25–82 (Russian). MR 492821, DOI 10.1002/mana.19780810103
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35J45
  • Retrieve articles in all journals with MSC (2000): 35J45
Bibliographic Information
  • S. A. Nazarov
  • Affiliation: Institute of Mechanical Engineering Problems, Bol′shoĭ pr. V.O. 61, 199178 St. Petersburg, Russia
  • MR Author ID: 196508
  • Email: serna@snark.ipme.ru, srgnazarov@yahoo.co.uk
  • Received by editor(s): October 1, 2005
  • Published electronically: March 19, 2007
  • Additional Notes: Supported by RFBR (grant no. 04-01-00567)
  • © Copyright 2007 American Mathematical Society
  • Journal: St. Petersburg Math. J. 18 (2007), 269-304
  • MSC (2000): Primary 35J45
  • DOI: https://doi.org/10.1090/S1061-0022-07-00951-X
  • MathSciNet review: 2244938