Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Gennadii Mikhailovich Goluzin and geometric function theory


Author: G. V. Kuz'mina
Translated by: N. Yu. Netsvetaev
Original publication: Algebra i Analiz, tom 18 (2006), nomer 3.
Journal: St. Petersburg Math. J. 18 (2007), 347-372
MSC (2000): Primary 30-02, 30C55
DOI: https://doi.org/10.1090/S1061-0022-07-00954-5
Published electronically: April 10, 2007
MathSciNet review: 2255849
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: G. M. Goluzin crucially influenced the development and extension of geometric function theory. His results received world-wide recognition, and his monograph ``Geometric theory of functions of a complex variable'' has been a reference book for several generations of analysts.

This paper is a survey of Goluzin's scientific work on the occasion of the 100th anniversary of his birth.


References [Enhancements On Off] (What's this?)

  • [A] I. A. Aleksandrov, Parametric continuations in the theory of univalent functions, ``Nauka'', Moscow, 1976. (Russian) MR 0480952 (58:1099)
  • [Ai] L. A. Aizenberg, Carleman's formulas in complex analysis, ``Nauka'', Novosibirsk, 1990; English transl., Math. Appl., vol. 244, Kluwer Acad. Publ. Group, Dordrecht, 1993. MR 1089612 (92b:32007); MR 1256735 (95d:32004)
  • [AlKuzL] Yu. E. Alenitsin, G. V. Kuz'mina, and N. A. Lebedev, Methods and results in geometric function theory, G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, 2nd ed., ``Nauka'', Moscow, 1966, pp. 532-626; English transl., Transl. Math. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 1969. MR 0219714 (36:2793); MR 0247039 (40:308)
  • [B] G. P. Bakhtina, Variational methods and quadratic differentials in the problems on nonoverlapping domains, Thesis, Kiev, 1975, 12 pp. (Russian)
  • [BaSo] R. W. Barnard and A. Yu. Solynin, Local variations and minimal area problem for Carathéodory functions, Indiana Univ. Math. J. 53 (2004), no. 1, 135-167. MR 2048187 (2005a:30028)
  • [BaPSo1] R. W. Barnard, K. Pearce, and A. Yu. Solynin, An isoperimetric inequality for logarithmic capacity, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 419-436. MR 1922198 (2003g:30039)
  • [BaPSo2] -, Area, width, and logarithmic capacity of convex sets, Pacific J. Math. 212 (2003), no. 1, 13-23. MR 2016565 (2004j:30041)
  • [BarKh] V. A. Bart and V. P. Khavin, Szegö-Kolmogorov-Krein theorems on a weighted trigonometric approximation, and Carleman-type formulas, Ukrain. Mat. Zh. 46 (1994), no. 1-2, 100-127; English transl., Ukrainian Math. J. 46 (1994), no. 1-2, 101-132. MR 1294817 (95k:42004)
  • [Br1] L. de Branges, A proof of the Bieberbach conjecture, LOMI Preprints, no. E-5-84, Leningrad, 1984. (English)
  • [Br2] -, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152. MR 772434 (86h:30026)
  • [D1] V. N. Dubinin, Change of harmonic measure in symmetrization, Mat. Sb. (N.S.) 124 (1984), no. 2, 272-279; English transl. in Math. USSR-Sb. 52 (1985). MR 746071 (85j:30049)
  • [D3] -, Transformation of functions and the Dirichlet principle, Mat. Zametki 38 (1985), no. 1, 49-55; English transl., Math. Notes 38 (1985), no. 1-2, 539-542. MR 804180 (87j:31005)
  • [D4] -, A separating transformation of domains, and problems on extremal decomposition, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), 48-66; English transl., J. Soviet Math. 53 (1991), no. 3, 252-263. MR 982483 (90c:30006)
  • [D5] -, On the maximum of one conformal invariant, Preprint, Akad. Nauk SSSR Dal'nevost. Otdel., Inst. Prikl. Mat., Vladivostok, 1990. (Russian)
  • [D6] -, Symmetrization in the geometric theory of functions of a complex variable, Uspekhi Mat. Nauk 49 (1994), no. 1, 3-76; English transl., Russian Math. Surveys 49 (1994), no. 1, 1-79. MR 1307130 (96b:30054)
  • [D7] -, Conformal mappings and inequalities for algebraic polynomials, Algebra i Analiz 13 (2001), no. 5, 16-43; English transl., St. Petersburg Math. J. 13 (2002), no. 5, 717-737. MR 1882862 (2003j:30010)
  • [Du] P. Duren, Univalent functions, Grundlehren Math. Wiss., vol. 259, Springer-Verlag, New York-Berlin, 1983. MR 708494 (85j:30034)
  • [E] E. G. Emel'yanov, Some properties of the moduli of families of curves, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 144 (1985), 72-82; English transl., J. Soviet Math. 38 (1987), no. 4, 2081-2090. MR 787415 (87i:30040)
  • [EKuz] E. G. Emel'yanov and G. V. Kuz'mina, Theorems on extremal partitioning in a family of systems of domains of different types, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), 74-104; English transl., J. Math. Sci. (New York) 95 (1999), no. 3, 2221-2239. MR 1691285 (2000c:30082)
  • [F1] S. I. Fedorov, On the maximum of a conformal invariant in a problem on nonoverlapping domains, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 112 (1981), 172-183; English transl. in J. Soviet Math. 25 (1984), no. 2. MR 644003 (83e:30026)
  • [F2] -, Chebotarev's variational problem in the theory of the capacity of plane sets, and covering theorems for univalent conformal mappings, Mat. Sb. (N.S.) 124 (1984), no. 1, 121-139; English transl. in Math. USSR-Sb. 52 (1985), no. 1. MR 743060 (85j:30006)
  • [FiPom] C. H. FitzGerald and Ch. Pommerenke, The de Branges theorem on univalent functions, Trans. Amer. Math. Soc. 290 (1985), no. 2, 683-690. MR 792819 (87b:30023)
  • [FoKuz] O. M. Fomenko and G. V. Kuz'mina, The last $ 100$ days of the Bieberbach conjecture, Math. Intelligencer 8 (1986), no. 1, 40-47. MR 823219 (87h:01059)
  • [G] G. M. Goluzin, Geometrical theory of functions of a complex variable, ``GITTL'', Moscow-Leningrad, 1952; 2nd ed., ``Nauka'', Moscow, 1966; German transl. of 1st ed., VEB Deutscher Verlag Wiss., Berlin, 1957; English transl. of 2nd ed., Transl. Math. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 1969. MR 0219714 (36:2793); MR 0219714 (36:2793); MR 0089896 (19:735e); MR 0247039 (40:308)
  • [Gr] H. Grunsky, Lectures on theory of functions in multiply connected domains, Vandenhoeck and Ruprecht, Göttingen, 1978. MR 0463413 (57:3365)
  • [H] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math. and Math. Phys., No. 48, Cambridge Univ. Press, Cambridge, 1958; 2nd ed., Cambridge Tracts in Math., No. 110, 1994. MR 1310776 (96f:30003); MR 1310776 (96f:30003)
  • [J1] J. A. Jenkins, On a problem of Gronwall, Ann. of Math. (2) 59 (1954), no. 3, 490-504. MR 0061170 (15:786b)
  • [J2] -, Some theorems on boundary distortion, Trans. Amer. Math. Soc. 81 (1956), no. 2, 477-500. MR 0076862 (17:956b)
  • [J3-1] -, On the existence of certain general extremal metrics, Ann. of Math. (2) 66 (1957), 440-453. MR 0090648 (19:845g)
  • [J3-2] -, On the existence of certain general extremal metrics. II, Tohoku Math. J. (2) 45 (1993), no. 2, 249-257. MR 1215927 (94h:31002)
  • [J4] -, Univalent functions and conformal mappings, Ergeb. Math. Grenzgeb. (N. F.), Bd. 18, Springer-Verlag, Berlin, 1958; 2nd ed. corrected, 1965. MR 0096806 (20:3288)
  • [J5] -, On certain geometrical problems associated with capacity, Math. Nachr. 39 (1969), no. 4-6, 349-356. MR 0249594 (40:2837)
  • [J6] -, The method of extremal metric, The Bieberbach Conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 95-104. MR 875234 (87k:30036)
  • [K1] L. I. Kolbina, Some extremal problems in conformal mapping, Dokl. Akad. Nauk SSSR (N.S.) 84 (1952), no. 5, 865-868. (Russian) MR 0048582 (14:35e)
  • [K2] -, Conformal mapping of the unit circle onto mutually nonoverlapping regions, Vestnik Leningrad. Univ. Ser. Mat. Fiz. Khim. 1955, vyp. 2, 37-43. (Russian) MR 0070723 (17:26d)
  • [KrKuh] S. L. Krushkal' and R. Kyunau, Quasiconformal mappings--new methods and applications, ``Nauka'', Novosibirsk, 1984; German transl., Teubner Texts in Math., vol. 54, Teubner, Leipzig, 1983. MR 730760 (85k:30032b); MR 0730760 (85k:30032b)
  • [Ku] V. O. Kuznetsov, Properties of associated quadratic differentials in some extremal problems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), 85-97; English transl., J. Soviet Math. 53 (1991), no. 3, 277-284. MR 982485 (90h:30057)
  • [Kuz1] G. V. Kuz'mina, Moduli of families of curves and quadratic differentials, Trudy Mat. Inst. Steklov. 139 (1980), 241 pp.; English transl., Proc. Steklov Inst. Math. 1982, no. 1, 231 pp. MR 612632 (84j:30038a); MR 0664708 (84j:30038b)
  • [Kuz2] -, On the problem of the maximum of the product of conformal radii of nonoverlapping domains, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 100 (1980), 131-145; English transl. in J. Soviet Math. 19 (1982), no. 6. MR 599943 (82c:30033)
  • [Kuz3] -, On the extremal partitioning of the Riemann sphere, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 185 (1990), 72-95; English transl., J. Soviet Math. 59 (1992), no. 6, 1180-1196. MR 1097590 (92k:30010)
  • [Kuz4] -, Methods of geometric function theory. I, II, Algebra i Analiz 9 (1997), no. 3, 41-103; no. 5, 1-50; English transl., St. Petersburg Math. J. 9 (1998), no. 3, 455-507; no. 5, 889-930. MR 1604397 (99c:30047a); MR 1604397 (99c:30047a)
  • [Kuz5] -, The extremal metric method in problems of maximizing the product of powers of conformal radii of nonoverlapping domains in the presence of free parameters, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), 52-67; English transl., J. Math. Sci. (New York) 129 (2005), no. 3, 3843-3851. MR 2023032 (2004m:30034)
  • [L1] N. A. Lebedev, Majorizing region for the expression $ I=\ln z^{\la } f'(z)^{1-\lambda} f(z)^{-\lambda}$ in the class $ S$, Vestnik Leningrad. Univ. Ser. Mat. Fiz. Khim. 1955, vyp. 3, 29-41. (Russian) MR 0072213 (17:248b)
  • [L2] -, Some estimates for functions regular and univalent in a circle, Vestnik Leningrad. Univ. Ser. Mat. Fiz. Khim. 1955, vyp. 4, 3-21. (Russian) MR 0074514 (17:599c)
  • [L3] -, The area principle in the theory of univalent functions, ``Nauka'', Moscow, 1975. (Russian) MR 0450540 (56:8834)
  • [Le] Y. J. Leung, On the Nth diameter problem in the class $ \Sigma$, Complex Variables Theory Appl. 9 (1987), no. 2-3, 227-239. MR 923223 (89d:30011)
  • [LeScho] Y. J. Leung and G. Schober, The $ N$th diameter problem in the class $ \Sigma$, J. Analyse Math. 48 (1987), 247-266. MR 910011 (89d:30012)
  • [M] I. M. Milin, Univalent functions and orthonormal systems, ``Nauka'', Moscow, 1971; English transl., Transl. Math. Monogr., vol. 49, Amer. Math. Soc., Providence, RI, 1977. MR 0369684 (51:5916); MR 0427620 (55:651)
  • [P] J. R. Partington, Interpolation, identification, and sampling, London Math. Soc. Monogr. (N.S.), vol. 17, The Clarendon Press, Oxford Univ. Press, New York, 1997. MR 1473224 (99m:41001)
  • [Pi] U. Pirl, Über die geometrische Gestalt eines Extremalkontinuums aus der Theorie der konformen Abbildung, Math. Nachr. 39 (1969), no. 1-6, 297-312. MR 0254223 (40:7432)
  • [PoSz] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., No. 27, Princeton Univ. Press, Princeton, NJ, 1951. MR 0043486 (13:270d)
  • [Pom1] Ch. Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159-173. MR 0180669 (31:4900)
  • [Pom2] -, On a variational method for univalent functions, Michigan Math. J. 17 (1970), no. 1, 1-3. MR 0255792 (41:452)
  • [Pom3] -, Univalent functions. With a chapter on quadratic differentials by G. Jensen, Math. Lehrbucher, Bd. 25, Vandenhoeck and Ruprecht, Göttingen, 1975. MR 0507768 (58:22526)
  • [RS] E. Reich and M. Schiffer, Estimates for the transfinite diameter of a continuum, Math. Z. 85 (1964), no. 1, 91-106. MR 0174721 (30:4921)
  • [SchaSp] A. C. Schaeffer and D. C. Spencer, Coefficient regions for schlicht functions, Amer. Math. Soc. Colloq. Publ., vol. 35, Amer. Math. Soc., New York, 1950. MR 0037908 (12:326c)
  • [SSp] M. Schiffer and D. C. Spencer, Functionals of finite Riemann surfaces, Princeton Univ. Press, Princeton, NJ, 1954. MR 0065652 (16:461g)
  • [So1] A. Yu. Solynin, The dependence on parameters of the modulus problem for families of several classes of curves, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 144 (1985), 136-145; English transl., J. Soviet Math. 38 (1987), no. 4, 2131-2139. MR 787420 (86h:30042)
  • [So2] -, Solution of the Pólya-Szegö isoperimetric problem, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), 140-153; English transl., J. Soviet Math. 53 (1991), no. 3, 311-320. MR 982489 (90h:30059)
  • [So3] -, Moduli and extremal metric problems, Algebra i Analiz 11 (1999), no. 1, 3-86; English transl., St. Petersburg Math. J. 11 (2000), no. 1, 1-65. MR 1691080 (2001b:30058)
  • [SoZ] A. Yu. Solynin and V. A. Zalgaller, An isoperimetric inequality for logarithmic capacity of polygons, Ann. of Math. (2) 159 (2004), no. 1, 277-303. MR 2052355 (2005a:31002)
  • [St] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), Bd. 5, Springer-Verlag, Berlin-New York, 1984. MR 0743423 (86a:30072)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 30-02, 30C55

Retrieve articles in all journals with MSC (2000): 30-02, 30C55


Additional Information

G. V. Kuz'mina
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Email: kuzmina@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-07-00954-5
Keywords: Univalent function, conformal mapping, geometric function theory, quadratic differential, method of the extremal metric, symmetrization method
Received by editor(s): March 30, 2006
Published electronically: April 10, 2007
Dedicated: Dedicated to the 100th anniversary of Gennadiĭ Mikhaĭlovich Goluzin’s birth
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society