Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Variational integrals with a wide range of anisotropy

Authors: M. Bildhauer, M. Fuchs and X. Zhong
Original publication: Algebra i Analiz, tom 18 (2006), nomer 5.
Journal: St. Petersburg Math. J. 18 (2007), 717-736
MSC (2000): Primary 35J20; Secondary 35A15, 49Q20
Published electronically: August 9, 2007
MathSciNet review: 2301040
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Anisotropic variational integrals of $ (p,q)$-growth are considered. For the scalar case, the interior $ C^{1,\alpha}$-regularity of bounded local minimizers is proved under the assumption that $ q\leq 2p$, and a famous counterexample of Giaquinta is discussed. In the vector case, some higher integrability result for the gradient is obtained.

References [Enhancements On Off] (What's this?)

  • [AF] E. Acerbi and N. Fusco, Partial regularity under anisotropic $ (p,q)$ growth conditions, J. Differential Equations 107 (1994), no. 1, 46-67. MR 1260848 (95c:49059)
  • [Bi] M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions, Lecture Notes in Math., vol. 1818, Springer-Verlag, Berlin, 2003. MR 1998189 (2004i:49072)
  • [BF1] M. Bildhauer and M. Fuchs, Partial regularity for variational integrals with $ (s,\mu,q)$-growth, Calc. Var. Partial Differential Equations 13 (2001), 537-560. MR 1867941 (2002h:49057)
  • [BF2] -, Two-dimensional anisotropic variational problems, Calc. Var. Partial Differential Equations 16 (2003), 177-186. MR 1956853 (2004e:49056)
  • [BF3] -, Partial regularity for a class of anisotropic variational integrals with convex hull property, Asymptot. Anal. 32 (2002), 293-315. MR 1993652 (2004k:49085)
  • [BF4] -, $ C^{1,\alpha}$-solutions to non-autonomous anisotropic variational problems, Calc. Var. Partial Differential Equations 24 (2005), 309-340. MR 2174429 (2006k:49101)
  • [BFM] M. Bildhauer, M. Fuchs, and G. Mingione, A priori gradient bounds and local $ C^{1,\alpha}$-estimates for (double) obstacle problems under non-standard growth conditions, Z. Anal. Anwendungen 20 (2001), 959-985. MR 1884515 (2003d:49052)
  • [Ca] S. Campanato, Hölder continuity of the solutions of some non-linear elliptic systems, Adv. in Math. 48 (1983), 16-43. MR 0697613 (84g:35049)
  • [Ch] H. J. Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal. 19 (1992), 933-945. MR 1192273 (93k:49002)
  • [ELM1] L. Esposito, F. Leonetti, and G. Mingione, Regularity results for minimizers of irregular integrals with $ (p,q)$-growth, Forum Math. 14 (2002), 245-272. MR 1880913 (2003a:49048)
  • [ELM2] -, Regularity for minimizers of functionals with $ p$-$ q$ growth, NODEA Nonlinear Differential Equations Appl. 6 (1999), 133-148. MR 1694803 (2000h:49056)
  • [FS] N. Fusco and C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993), 153-167. MR 1211728 (94e:49013)
  • [Gi1] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., vol. 105, Princeton Univ. Press, Princeton, NJ, 1983. MR 0717034 (86b:49003)
  • [Gi2] -, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248. MR 0905200 (88h:49034)
  • [GM] M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math. 57 (1986), 55-99. MR 0866406 (87m:49036)
  • [Ho] M. C. Hong, Some remarks on the minimizers of variational integrals with nonstandard growth conditions, Boll. Un. Mat. Ital. A (7) 6 (1992), 91-101. MR 1164739 (93f:49034)
  • [Ma1] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal. 105 (1989), 267-284. MR 0969900 (90a:49017)
  • [Ma2] -, Regularity and existence of solutions of elliptic equations with $ (p, q)$-growth conditions, J. Differential Equations 90 (1991), 1-30. MR 1094446 (92e:35061)
  • [Mo] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., Bd. 130, Springer-Verlag, New York, 1966. MR 0202511 (34:2380)
  • [LU] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, ``Nauka'', Moscow, 1964; English transl., Acad. Press, New York-London, 1968. MR 0244627 (39:5941)
  • [UU] N. N. Ural'tseva and A. B. Urdaletova, The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1983, vyp. 4, 50-56; English transl., Vestnik Leningrad Univ. Math. 16 (1984), 263-270. MR 0725829 (85g:35048)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35J20, 35A15, 49Q20

Retrieve articles in all journals with MSC (2000): 35J20, 35A15, 49Q20

Additional Information

M. Bildhauer
Affiliation: Department of Mathematics, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany

M. Fuchs
Affiliation: Department of Mathematics, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany

X. Zhong
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, Finland

Keywords: Anisotropic problems, regularity of minimizers
Received by editor(s): April 22, 2006
Published electronically: August 9, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society