Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Arrangements of an $ M$-quintic with respect to a conic that maximally intersects its odd branch


Author: S. Yu. Orevkov
Translated by: the author
Original publication: Algebra i Analiz, tom 19 (2007), nomer 4.
Journal: St. Petersburg Math. J. 19 (2008), 625-674
MSC (2000): Primary 57R52, 57R19
DOI: https://doi.org/10.1090/S1061-0022-08-01014-5
Published electronically: May 14, 2008
MathSciNet review: 2381938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Under certain assumptions, the arrangements mentioned in the title are classified up to isotopy. Their algebraic realizability is discussed.


References [Enhancements On Off] (What's this?)

  • 1. E. Brugallé, A bound on the number of jumps of real algebraic curves in $ \Sigma_n$, Preprint, 2006.
  • 2. A. I. Degtyarev and V. M. Kharlamov, Topological properties of real algebraic varieties: Rokhlin's way, Uspekhi Mat. Nauk 55 (2000), no. 4, 129-212; English transl., Russian Math. Surveys 55 (2000), no. 4, 735-814. MR 1786731 (2001h:14077)
  • 3. T. Fiedler, Congruence mod 16 for symmetric M-curves (copy of a handwritten paper).
  • 4. S. Fiedler-LeTouzé and S. Yu. Orevkov, A flexible affine $ M$-sextic which is algebraically unrealizable, J. Algebraic Geom. 11 (2002), 293-310. MR 1874116 (2002h:14095)
  • 5. V. Florens, On the Fox-Milnor theorem for the Alexander polynomial of links, Int. Math. Res. Not. 2004, no. 2, 55-67. MR 2040323 (2005b:57014)
  • 6. M. A. Gushchin, Construction of some arrangements of conics and $ M$-quintics with a point at infinity, Vestnik Nizhegorod. Gos. Univ. Mat. Vyp. 1(2) (2004), 43-52. (Russian)
  • 7. -, A conic and $ M$-quintic with a point at infinity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 329 (2005), 14-27; English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 4, 502-510. MR 2215328 (2007a:14063)
  • 8. V. M. Kharlamov and O. Ya. Viro, Extensions of the Gudkov-Rohlin congruence, Topology and Geometry--Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 357-406. MR 0970085 (90a:14030)
  • 9. A. B. Korchagin and G. M. Polotovskii, On arrangements of a plane real quintic curve with respect to a pair of lines, Commun. Contemp. Math. 5 (2003), no. 1, 1-24. MR 1958018 (2004a:14060)
  • 10. -, On arrangements of a plane real quintic curve with respect to a pair of lines. II (in preparation).
  • 11. A. Korchagin and E. I. Shustin, Sixth-degree affine curves and smoothings of a nondegenerate sixth-order singular point, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1181-1199; English transl., Math. USSR-Izv. 33 (1989), no. 3, 501-520. MR 0984215 (90h:14043)
  • 12. S. M. Natanzon, Automorphisms of the Riemann surface of an $ M$-curve, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 82-83; English transl., Funct. Anal. Appl. 12 (1978), no. 3, 228-229 (1979). MR 0509395 (82b:14020)
  • 13. S. Yu. Orevkov, Link theory and oval arrangements of real algebraic curves, Topology 38 (1999), 779-810. MR 1679799 (2000b:14066)
  • 14. -, Projective conics and $ M$-quintics in general position with a maximally intersecting pair of ovals, Mat. Zametki 65 (1999), no. 4, 632-636; English transl., Math. Notes 65 (1999), no. 3-4, 528-532. MR 1715066 (2000h:14050)
  • 15. -, Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory Ramifications 10 (2001), 1005-1023. MR 1867106 (2002m:20060)
  • 16. -, Classification of flexible M-curves of degree 8 up to isotopy, Geom. Funct. Anal. 12 (2002), 723-755. MR 1935547 (2003h:14090)
  • 17. -, Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), 517-531. MR 2060598 (2005d:14084)
  • 18. -, Construction of arrangements of $ M$-quartics and $ M$-cubics with the maximal intersecting of an oval and the odd branch, Vestnik Nizhegorod. Gos. Univ. Mat. Modelirovanie Optim. Upravlenie Vyp. 1(25) (2002), 12-48. (Russian)
  • 19. -, Quasipositivity problem for 3-braids, Turkish J. Math. 28 (2004), 89-93. MR 2056762 (2005d:20063)
  • 20. S. Yu. Orevkov and G. M. Polotovskiĭ, Projective $ M$-cubics and $ M$-quartics in general position with a maximally intersecting pair of ovals, Algebra i Analiz 11 (1999), no. 5, 166-184; English transl., St. Petersburg Math. J. 11 (2000), no. 5, 837-852. MR 1734352 (2000m:14067)
  • 21. S. Yu. Orevkov and E. I. Shustin, Flexible algebraically unrealizable curves: Rehabilitation of Hilbert-Rohn-Gudkov approach, J. Reine Angew. Math. 551 (2002), 145-172. MR 1932177 (2005b:14100)
  • 22. -, Pseudoholomorphic algebraically unrealizable curves, Mosc. Math. J. 3 (2003), 1053-1083. MR 2078573 (2005e:14081)
  • 23. G. M. Polotovskiĭ, A catalogue of $ M$-decomposable curves of order six, Dokl. Akad. Nauk SSSR 236 (1977), no. 3, 548-551; English transl. in Soviet Math. Dokl. 18 (1977). MR 0460339 (57:333)
  • 24. J.-Y. Welschinger, Courbes algébriques réelles et courbes flexibles sur les surfaces réglées de base $ \mathbb{CP}^1$, Proc. London Math. Soc. (3) 85 (2002), 367-392. MR 1912055 (2003f:14064)
  • 25. V. I. Zvonilov, Complex topological invariants of real algebraic curves on a hyperboloid and an ellipsoid, Algebra i Analiz 3 (1991), no. 5, 88-108; English transl., St. Petersburg Math. J. 3 (1992), no. 5, 1023-1042. MR 1186237 (93j:14071)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 57R52, 57R19

Retrieve articles in all journals with MSC (2000): 57R52, 57R19


Additional Information

S. Yu. Orevkov
Affiliation: Steklov Mathematical Institute, Gubkina 8, Moscow, Russia, and Laboratoire Émile Picard, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
Email: orevkov@math.ups-tlse.fr

DOI: https://doi.org/10.1090/S1061-0022-08-01014-5
Keywords: Plane projective real curve, almost complex structure, isotopy, algebraic (un)realizability
Received by editor(s): August 31, 2006
Published electronically: May 14, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society