Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On (2,3)-generation of matrix groups over the ring of integers


Author: M. A. Vsemirnov
Translated by: the author
Original publication: Algebra i Analiz, tom 19 (2007), nomer 6.
Journal: St. Petersburg Math. J. 19 (2008), 883-910
MSC (2000): Primary 20G30; Secondary 20F05, 20C12
DOI: https://doi.org/10.1090/S1061-0022-08-01026-1
Published electronically: August 21, 2008
MathSciNet review: 2411638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The groups $ \mathrm{GL}(5,\mathbb{Z})$, $ \mathrm{SL}(5,\mathbb{Z})$, $ \mathrm{SL}(6,\mathbb{Z})$, $ \mathrm{GL}(7,\mathbb{Z})$ and $ \mathrm{SL}(7,\mathbb{Z})$ are (2,3)-generated.


References [Enhancements On Off] (What's this?)

  • 1. L. Di Martino and N. Vavilov, $ (2,3)$-generation of $ \mathrm{SL}(n,q)$. I. Cases $ n=5,6,7$, Comm. Algebra 22 (1994), no. 4, 1321-1347. MR 1261262 (95f:20076)
  • 2. -, $ (2,3)$-generation of $ \mathrm{SL}(n,q)$. II. Cases $ n\geq 8$, Comm. Algebra 24 (1996), 487-515. MR 1373489 (97e:20067)
  • 3. A. J. Hahn and O. T. O'Meara, The classical groups and $ K$-theory, Grundlehren Math. Wiss., Bd. 291, Springer-Verlag, Berlin, 1989. MR 1007302 (90i:20002)
  • 4. M. W. Liebeck and A. Shalev, Classical groups, probabilistic methods, and the $ (2,3)$-generation problem, Ann. of Math. (2) 144 (1996), 77-125. MR 1405944 (97e:20106a)
  • 5. A. Yu. Luzgarëv and I. M. Pevzner, Some facts about the life of $ \mathrm{GL}(5,\mathbb{Z})$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 305 (2003), 153-162; English transl., J. Math. Sci. (N. Y.) 130 (2005), no. 3, 4729-4733. MR 2033620
  • 6. G. A. Miller, On the groups generated by two operators, Bull. Amer. Math. Soc. 7 (1901), no. 10, 424-426. MR 1557828
  • 7. Ya. N. Nuzhin, On a question of M. Conder, Mat. Zametki 70 (2001), no. 1, 79-87; English transl., Math. Notes 70 (2001), no. 1-2, 71-78. MR 1883773 (2002m:20076)
  • 8. P. Sanchini and M. C. Tamburini, Constructive $ (2,3)$-generation: A permutational approach, Rend. Sem. Mat. Fis. Milano 64 (1994), 141-158 (1996). MR 1397469 (97i:20040)
  • 9. M. C. Tamburini and J. S. Wilson, On the $ (2,3)$-generation of some classical groups. II, J. Algebra 176 (1995), 667-680. MR 1351631 (96h:20085)
  • 10. M. C. Tamburini, J. S. Wilson, and N. Gavioli, On the $ (2,3)$-generation of some classical groups. I, J. Algebra 168 (1994), 353-370. MR 1289105 (95f:20075)
  • 11. M. C. Tamburini and P. Zucca, On a question of M. Conder, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2000), no. 1, 5-7. MR 1797048 (2001i:20097)
  • 12. M. A. Vsemirnov, Is the group $ \mathrm{SL}(6,\mathbb{Z})$ $ (2,3)$-generated? Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 330 (2006), 101-130; English transl., J. Math. Sci. (N. Y.) 140 (2007), no. 5, 660-675. MR 2253569 (2008e:20074)
  • 13. -, The group $ \mathrm{GL}(6,\mathbb{Z})$ is $ (2,3)$-generated, J. Group Theory 10 (2007), no.  4, 425-430. MR 2334749 (2008f:20118)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 20G30, 20F05, 20C12

Retrieve articles in all journals with MSC (2000): 20G30, 20F05, 20C12


Additional Information

M. A. Vsemirnov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Email: vsemir@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-08-01026-1
Keywords: $(2,3)$-generation, linear groups
Received by editor(s): August 10, 2007
Published electronically: August 21, 2008
Additional Notes: Supported by the RAS program of fundamental research “Modern problems of theoretical mathematics” and by the “Scientific schools” program (grant no. NSh-8464-2006-1)
Dedicated: To the centenary of D. K. Faddeev’s birth
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society