Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Absolutely continuous spectrum of Stark type operators


Author: A. A. Pozharskiĭ
Translated by: B. M. Bekker
Original publication: Algebra i Analiz, tom 20 (2008), nomer 3.
Journal: St. Petersburg Math. J. 20 (2009), 473-492
MSC (2000): Primary 34L40
DOI: https://doi.org/10.1090/S1061-0022-09-01057-7
Published electronically: April 8, 2009
MathSciNet review: 2454457
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some new conditions are obtained for the absolutely continuous spectrum of a Stark operator to fill the entire real line.


References [Enhancements On Off] (What's this?)

  • 1. V. S. Buslaev and L. D. Faddeev, Formulas for traces for a singular Sturm-Liouville differential operator, Dokl. Akad. Nauk SSSR 132 (1960), no. 1, 13-16; English transl., Soviet Math. Dokl. 1 (1960), 451-454. MR 0120417 (22:11171)
  • 2. S. N. Naboko and A. B. Pushnitskiĭ, A point spectrum, lying on a continuous spectrum, for weakly perturbed operators of Stark type, Funktsional. Anal. i Prilozhen. 29 (1995), no. 4, 31-44; English transl., Funct. Anal. Appl. 29 (1995), no. 4, 248-257 (1996). MR 1375539 (96k:34187)
  • 3. A. Zygmund, Trigonometric series. Vols. I, II, third edition, Cambridge Univ. Press, Cambridge, 2002. MR 1963498 (2004h:01041)
  • 4. A. A. Pozharskiĭ, Wannier-Stark type operators with singular potentials, Algebra i Analiz 14 (2002), no. 1, 158-193; English transl., St. Petersburg Math. J. 14 (2003), no. 1, 119-145. MR 1893324 (2003e:81051)
  • 5. -, On the spectrum of the Wannier-Stark operator, Algebra i Analiz 16 (2004), no. 3, 171-200; English transl., St. Petersburg Math. J. 16 (2005), no. 3, 561-581. MR 2083569 (2005e:81059)
  • 6. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987. MR 0883643 (88g:35003)
  • 7. V. S. Buslaev, Kronig-Penney electron in a homogeneous electric field, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. (2), vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 45-57. MR 1730502 (2001b:81039)
  • 8. M. Christ and A. Kiselev, Absolutely continuous spectrum of Stark operators, www.arxiv.org: math.SP/0110141 v2 17 Oct 2001. MR 1971938 (2005a:81066)
  • 9. P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Comm. Math. Phys. 203 (1999), 341-347. MR 1697600 (2000c:34223)
  • 10. D. J. Gilbert and D. B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), 30-56. MR 0915965 (89a:34033)
  • 11. Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329-367. MR 1666767 (2000f:47060)
  • 12. G. Perelman, On the absolutely continuous spectrum of Stark operators, Comm. Math. Phys. 234 (2003), 359-381. MR 1962465 (2004c:81081)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34L40

Retrieve articles in all journals with MSC (2000): 34L40


Additional Information

A. A. Pozharskiĭ
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskii Prospekt 28, Petrodvorets, St. Petersburg, 198504, Russia
Email: pozharsky@math.nw.ru

DOI: https://doi.org/10.1090/S1061-0022-09-01057-7
Keywords: Stark operator, spectrum, Weyl function, $BF$-type estimates
Received by editor(s): October 31, 2006
Published electronically: April 8, 2009
Additional Notes: Supported by RFBR (grant nos. 05-01-01076 and 05-01-02944)
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society