Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Modulus of continuity of operator functions


Authors: Yu. B. Farforovskaya and L. Nikolskaya
Original publication: Algebra i Analiz, tom 20 (2008), nomer 3.
Journal: St. Petersburg Math. J. 20 (2009), 493-506
MSC (2000): Primary 47B15
DOI: https://doi.org/10.1090/S1061-0022-09-01058-9
Published electronically: April 8, 2009
MathSciNet review: 2454458
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ and $ B$ be bounded selfadjoint operators on a separable Hilbert space, and let $ f$ be a continuous function defined on an interval $ [a,b]$ containing the spectra of $ A$ and $ B$. If $ \omega _f$ denotes the modulus of continuity of $ f$, then

$\displaystyle \Vert f(A)-f(B)\Vert \leq 4\Big[\log\Big(\frac{b-a}{\Vert A-B\Vert}+1\Big)+1\Big]^2 \cdot \omega _f(\Vert A-B\Vert).$

A similar result is true for unbounded selfadjoint operators, under some natural assumptions on the growth of $ f$.


References [Enhancements On Off] (What's this?)

  • 1. V. V. Peller, Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 233 (2006), no. 2, 515-544. MR 2214586 (2008e:47056)
  • 2. -, Hankel operators in the perturbation theory of unbounded selfadjoint operators, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529-544. MR 1044807 (92d:47037)
  • 3. M. Sh. Birman and M. Z. Solomyak, Double Stieltjes operator integrals, Probl. Mat. Fiz., No. 1, Spectral Theory and Wave Processes, Leningrad. Univ., Leningrad, 1966, pp. 33-67; English transl., Topics in Math. Phys., vol. 1, Consultants Bureau [Plenum Publ. Corporation], New York, 1967, pp. 25-54. MR 0209872 (35:767b)
  • 4. G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), 603-639. MR 0493490 (58:12490)
  • 5. L. N. Nikol'skaya and Yu. B. Farforovskaya, Toeplitz and Hankel matrices as Hadamard-Schur multipliers, Algebra i Analiz 15 (2003), no. 6, 141-160; English transl., St. Petersburg Math. J. 15 (2004), no. 6, 915-928. MR 2044634 (2005a:47050)
  • 6. V. I. Matsaev, A class of completely continuous operators, Dokl. Akad. Nauk SSSR 139 (1961), no. 3, 548-551; English transl., Soviet Math. Dokl. 2 (1961), 972-975. MR 0131769 (24:A1617)
  • 7. G. Polya, Remarks on characteristic functions, Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, Univ. California Press, Berkeley-Los Angeles, 1949, pp. 115-123. MR 0028541 (10:463c)
  • 8. S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. Ann. 108 (1933), 378-410. MR 1512856
  • 9. G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, S.-B. Sächs. Akad. Wiss. 63 (1911), 501-511.
  • 10. J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.
  • 11. H. Helson, Harmonic analysis, Addison-Wesley Publ. Co., Reading, MA, 1983. MR 0729682 (85e:43001)
  • 12. Yu. B. Farforovskaya, Double operator integrals and their estimates in the uniform norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), 148-173; English transl., J. Math. Sci. (New York) 92 (1998), no. 1, 3640-3656. MR 1464432 (98i:47018)
  • 13. -, An estimate of the norm $ \vert f(B)-f(A)\vert$ for selfadjoint operators $ A$ and $ B$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56 (1976), 143-162; English transl., J. Soviet Math. 14 (1980), no. 2, 1133-1149. MR 0477850 (57:17352)
  • 14. -, Estimates for commutators of normal operators, Algebra i Analiz 11 (1999), no. 4, 204-221; English transl., St. Petersburg Math. J. 11 (2000), no. 4, 687-699. MR 1713939 (2000j:47040)
  • 15. Yu. B. Farforovskaya and L. Nikolskaia, An inequality for commutators of normal operators, Acta Sci. Math. (Szeged) 71 (2005), 751-765. MR 2206607 (2006k:47043)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 47B15

Retrieve articles in all journals with MSC (2000): 47B15


Additional Information

Yu. B. Farforovskaya
Affiliation: Mathematics Department, State University of Telecommunication, St. Petersburg, Russia
Email: rabk@sut.ru

L. Nikolskaya
Affiliation: Institut de Mathématiques de Bordeaux, Université Bordeaux-1, 351 Cours de la Libération, 33405 Talence, France
Email: andreeva@math.u-bordeaux.fr

DOI: https://doi.org/10.1090/S1061-0022-09-01058-9
Keywords: Selfadjoint operator, operator function, modulus of continuity
Received by editor(s): June 14, 2007
Published electronically: April 8, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society