Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 

 

Modulus of continuity of operator functions


Authors: Yu. B. Farforovskaya and L. Nikolskaya
Original publication: Algebra i Analiz, tom 20 (2008), nomer 3.
Journal: St. Petersburg Math. J. 20 (2009), 493-506
MSC (2000): Primary 47B15
Published electronically: April 8, 2009
MathSciNet review: 2454458
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ and $ B$ be bounded selfadjoint operators on a separable Hilbert space, and let $ f$ be a continuous function defined on an interval $ [a,b]$ containing the spectra of $ A$ and $ B$. If $ \omega _f$ denotes the modulus of continuity of $ f$, then

$\displaystyle \Vert f(A)-f(B)\Vert \leq 4\Big[\log\Big(\frac{b-a}{\Vert A-B\Vert}+1\Big)+1\Big]^2 \cdot \omega _f(\Vert A-B\Vert).$

A similar result is true for unbounded selfadjoint operators, under some natural assumptions on the growth of $ f$.


References [Enhancements On Off] (What's this?)

  • 1. V. V. Peller, Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 233 (2006), no. 2, 515–544. MR 2214586, 10.1016/j.jfa.2005.09.003
  • 2. Vladimir V. Peller, Hankel operators in the perturbation theory of unbounded selfadjoint operators, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529–544. MR 1044807
  • 3. M. Š. Birman and M. Z. Solomjak, Double Stieltjes operator integrals, Probl. Math. Phys., No. I, Spectral Theory and Wave Processes (Russian), Izdat. Leningrad. Univ., Leningrad, 1966, pp. 33–67 (Russian). MR 0209872
  • 4. G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603–639. MR 0493490
  • 5. L. N. Nikol′skaya and Yu. B. Farforovskaya, Toeplitz and Hankel matrices as Hadamard-Schur multipliers, Algebra i Analiz 15 (2003), no. 6, 141–160 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 6, 915–928. MR 2044634, 10.1090/S1061-0022-04-00838-6
  • 6. V. I. Macaev, A class of completely continuous operators, Dokl. Akad. Nauk SSSR 139 (1961), 548–551 (Russian). MR 0131769
  • 7. G. Pólya, Remarks on characteristic functions, Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, University of California Press, Berkeley and Los Angeles, 1949, pp. 115–123. MR 0028541
  • 8. S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. Ann. 108 (1933), no. 1, 378–410 (German). MR 1512856, 10.1007/BF01452844
  • 9. G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, S.-B. Sächs. Akad. Wiss. 63 (1911), 501-511.
  • 10. J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.
  • 11. Henry Helson, Harmonic analysis, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. MR 729682
  • 12. Yu. B. Farforovskaya, Double operator integrals and their estimates in the uniform norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), no. Issled. po Linein. Oper. i Teor. Funktsii. 24, 148–173, 217 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 92 (1998), no. 1, 3640–3656. MR 1464432, 10.1007/BF02440150
  • 13. Ju. B. Farforovskaja, An estimate of the norm of \mid𝑓(𝐵)-𝑓(𝐴)\mid for selfadjoint operators 𝐴 and 𝐵, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56 (1976), 143–162, 197 (Russian, with English summary). Investigations on linear operators and theory of functions, VI. MR 0477850
  • 14. Yu. B. Farforovskaya, Estimates for the commutators of normal operators, Algebra i Analiz 11 (1999), no. 4, 204–221 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 11 (2000), no. 4, 687–699. MR 1713939
  • 15. Yu. B. Farforovskaya and Ludmila Nikolskaia, An inequality for commutators of normal operators, Acta Sci. Math. (Szeged) 71 (2005), no. 3-4, 751–765. MR 2206607

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 47B15

Retrieve articles in all journals with MSC (2000): 47B15


Additional Information

Yu. B. Farforovskaya
Affiliation: Mathematics Department, State University of Telecommunication, St. Petersburg, Russia
Email: rabk@sut.ru

L. Nikolskaya
Affiliation: Institut de Mathématiques de Bordeaux, Université Bordeaux-1, 351 Cours de la Libération, 33405 Talence, France
Email: andreeva@math.u-bordeaux.fr

DOI: http://dx.doi.org/10.1090/S1061-0022-09-01058-9
Keywords: Selfadjoint operator, operator function, modulus of continuity
Received by editor(s): June 14, 2007
Published electronically: April 8, 2009
Article copyright: © Copyright 2009 American Mathematical Society