Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Duality theorem for motives


Authors: I. A. Panin and S. A. Yagunov
Translated by: The authors
Original publication: Algebra i Analiz, tom 21 (2009), nomer 2.
Journal: St. Petersburg Math. J. 21 (2010), 309-315
MSC (2000): Primary 14F42
DOI: https://doi.org/10.1090/S1061-0022-10-01096-4
Published electronically: January 26, 2010
MathSciNet review: 2553047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general duality theorem for the category of motives is established, with a short, simple, and self-contained proof.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, Stable homotopy and generalized homology, Univ. of Chicago Press, Chicago-London, 1974. MR 0402720 (53:6534)
  • 2. A. Dold and D. Puppe, Duality, trace, and transfer, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, pp. 81-102. MR 0656721 (83f:55005)
  • 3. A. Fomenko and D. Fuks, A course in homotopic topology, Nauka, Moscow, 1989. (Russian) MR 1027592 (92a:55001)
  • 4. E. Friedlander and V. Voevodsky, Bivariant cycle cohomology, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 138-187. MR 1764201
  • 5. Yu. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. 77 (119) (1968), no. 4, 475-507; English transl., Math. USSR-Sb. 6 (1968), 439-470. MR 0258836 (41:3482)
  • 6. J. P. May, The additivity of traces in triangulated categories, Adv. Math. 163 (2001), no. 1, 34-73. MR 1867203 (2002k:18019)
  • 7. C. Mazza, V. Voevodsky, and C. Weibel, Lecture notes on motivic cohomology, Clay Math. Monogr., vol. 2, Amer. Math. Soc., Providence, RI; Clay Math. Inst., Cambridge, MA, 2006. MR 2242284 (2007e:14035)
  • 8. I. Panin and S. Yagunov, $ T$-spectra and Poincaré duality, J. Reine Angew. Math. 617 (2008), 193-213. MR 2400995 (2009b:14039)
  • 9. H. Poincaré, Analysis situs, J. École Polytech. 1 (1895), 1-121.
  • 10. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117-189. MR 1744945 (2001g:14031)
  • 11. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 2002, no. 7, 351-355. MR 1883180 (2003c:14021)
  • 12. -, Triangulated categories of motives over a field, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188-238. MR 1764202

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 14F42

Retrieve articles in all journals with MSC (2000): 14F42


Additional Information

I. A. Panin
Affiliation: St. Petersburg Branch, Steklov Institute of Mathematics, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Address at time of publication: Fakultät für Mathematik, Universität Bielefeld, Universitätstrasse, 25, Bielefeld 33615, Germany
Email: panin@pdmi.ras.ru

S. A. Yagunov
Affiliation: St. Petersburg Branch, Steklov Institute of Mathematics, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Address at time of publication: Fakultät für Mathematik, Universität Bielefeld, Universitätstrasse, 25, Bielefeld 33615, Germany
Email: yagunov@gmail.com

DOI: https://doi.org/10.1090/S1061-0022-10-01096-4
Keywords: Category of motives, Poincar\'e duality, smooth algebraic varieties
Received by editor(s): September 25, 2008
Published electronically: January 26, 2010
Additional Notes: Both authors are deeply grateful to SFB-701 for its financial support during their work.
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society