Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Extension of matrices with entries in $ H^{\infty}$ on coverings of Riemann surfaces of finite type


Author: A. Brudnyi
Original publication: Algebra i Analiz, tom 21 (2009), nomer 3.
Journal: St. Petersburg Math. J. 21 (2010), 423-432
MSC (2000): Primary 30D55, 30H05
DOI: https://doi.org/10.1090/S1061-0022-10-01101-5
Published electronically: February 25, 2010
MathSciNet review: 2588763
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper continues an earlier work of the author. An extension theorem is proved for matrices with entries in the algebra of bounded holomorphic functions defined on an unbranched covering of a Carathéodory hyperbolic Riemann surface of finite type.


References [Enhancements On Off] (What's this?)

  • [BD] D. E. Barrett and J. Diller, A new construction of Riemann surfaces with corona, J. Geom. Anal. 8 (1998), 341-347. MR 1707732 (2000j:30076)
  • [Br1] A. Brudnyi, Projections in the space $ H^{\infty}$ and the corona theorem for subdomains of coverings of finite bordered Riemann surfaces, Ark. Mat. 42 (2004), no. 1, 31-59. MR 2056544 (2005f:46100)
  • [Br2] -, Grauert- and Lax-Halmos-type theorems and extension of matrices with entries in $ H^{\infty}$, J. Funct. Anal. 206 (2004), 87-108. MR 2024347 (2004m:46126)
  • [Br3] -, A uniqueness property for $ H^{\infty}$ on coverings of projective manifolds, Michigan Math. J. 51 (2003), no. 3, 503-507. MR 2021004 (2004i:32009)
  • [Br4] -, Corona theorem for $ H^{\infty}$ on coverings of Riemann surfaces of finite type, Michigan Math. J. 56 (2008), 283-299. MR 2492395
  • [Br5] -, Matrix-valued corona theorem for multiply connected domains, Indiana Univ. Math. J. 49 (2000), 1405-1410. MR 1836534 (2002f:46094)
  • [C] L. Carleson, Interpolation of bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. MR 0141789 (25:5186)
  • [ES] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, NJ, 1952. MR 0050886 (14:398b)
  • [F] H. Freudenthal, Über dimensionserhöhende stetige Abbildungen, Sitzber. Preus. Akad. Wiss. 5 (1932), 34-38.
  • [Ga] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., vol. 96, Acad. Press, New York-London, 1981. MR 0628971 (83g:30037)
  • [G] T. W. Gamelin, Uniform algebras and Jensen measures, London Math. Soc. Lecture Notes Ser., vol. 32, Cambridge Univ. Press, Cambridge-New York, 1978. MR 0521440 (81a:46058)
  • [GJ] J. B. Garnett and P. W. Jones, The corona theorem for Denjoy domains, Acta Math. 155 (1985), 27-40. MR 0793236 (87e:30044)
  • [H] D. Husemoller, Fibre bundles, McGraw-Hill Book Co., New York, 1966. MR 0229247 (37:4821)
  • [JM] P. W. Jones and D. Marshall, Critical points of Green's functions, harmonic measure, and the corona problem, Ark. Mat. 23 (1985), 281-314. MR 0827347 (87h:30101)
  • [N] K. Nagami, Dimension theory, Pure Appl. Math., vol. 37, Acad. Press, New York-London, 1970. MR 0271918 (42:6799)
  • [L] F. Lárusson, Holomorphic functions of slow growth on nested covering spaces of compact manifolds, Canad. J. Math. 52 (2000), 982-998. MR 1782336 (2002c:32039)
  • [Li] V. Lin, Holomorphic fiberings and multivalued functions of elements of a Banach algebra, Funktsional. Anal. i Prilozhen. 7 (1973), no. 2, 43-51; English transl., Funct. Anal. Appl. 7 (1973), no. 2, 122-128. MR 0318898 (47:7444)
  • [M] C. N. Moore, The corona theorem for domains whose boundary lies in a smooth curve, Proc. Amer. Math. Soc. 100 (1987), no. 2, 266-270. MR 0884464 (88h:30055)
  • [St] E. L. Stout, Bounded holomorphic functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 120 (1965), 255-285. MR 0183882 (32:1358)
  • [T] V. Tolokonnikov, Extension problem to an invertible matrix, Proc. Amer. Math. Soc. 117 (1993), no. 4, 1023-1030. MR 1123668 (93e:46061)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 30D55, 30H05

Retrieve articles in all journals with MSC (2000): 30D55, 30H05


Additional Information

A. Brudnyi
Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
Email: albru@math.ucalgary.ca

DOI: https://doi.org/10.1090/S1061-0022-10-01101-5
Keywords: Corona theorem, bounded holomorphic function, covering, Riemann surface of finite type
Received by editor(s): January 21, 2008
Published electronically: February 25, 2010
Additional Notes: Supported in part by NSERC
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society