Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 

 

Invariants of coadjoint representations of regular factors


Author: A. N. Panov
Translated by: the author
Original publication: Algebra i Analiz, tom 22 (2010), nomer 3.
Journal: St. Petersburg Math. J. 22 (2011), 497-514
MSC (2010): Primary 17B10
Published electronically: March 18, 2011
MathSciNet review: 2729948
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generators are found for the field of invariants of coadjoint representations for the Lie algebras that are factors of a unitriangular Lie algebra by some regular ideal.


References [Enhancements On Off] (What's this?)

  • 1. A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR 2069175
  • 2. A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
  • 3. A. N. Panov, On the index of some nilpotent Lie algebras, Sovrem. Mat. Prilozh. 60, Algebra (2008), 122–129 (Russian, with Russian summary); English transl., J. Math. Sci. (N. Y.) 161 (2009), no. 1, 122–129. MR 2676262, 10.1007/s10958-009-9539-3
  • 4. -, The diagram method in the investigation of coadjoint orbits, Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser. 2008, no. 6, 139-151. (Russian)
  • 5. M. V. Ignat′ev and A. N. Panov, Coadjoint orbits of the group 𝑈𝑇(7,𝐾), Fundam. Prikl. Mat. 13 (2007), no. 5, 127–159 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 156 (2009), no. 2, 292–312. MR 2379743, 10.1007/s10958-008-9267-0
  • 6. A. N. Panov, Involutions in 𝑆_{𝑛} and associated coadjoint orbits, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 349 (2007), no. Voprosy Teorii Predstavlenii Algebr i Grupp. 16, 150–173, 244 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 151 (2008), no. 3, 3018–3031. MR 2742857, 10.1007/s10958-008-9016-4
  • 7. Jacques Dixmier, Enveloping algebras, Graduate Studies in Mathematics, vol. 11, American Mathematical Society, Providence, RI, 1996. Revised reprint of the 1977 translation. MR 1393197
  • 8. Brian Parshall and Jian Pan Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no. 439, vi+157. MR 1048073, 10.1090/memo/0439
  • 9. Fabio Gavarini, Presentation by Borel subalgebras and Chevalley generations for quantum enveloping algebras, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 2, 291–308. MR 2243788, 10.1017/S0013091504000689
  • 10. Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1359532

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 17B10

Retrieve articles in all journals with MSC (2010): 17B10


Additional Information

A. N. Panov
Affiliation: Samara State University, Ul. Akad. Pavlova 1, Samara 443011, Russia
Email: apanov@list.ru

DOI: http://dx.doi.org/10.1090/S1061-0022-2011-01155-0
Keywords: Lie algebra, coadjoint representation, algebra of invariants
Received by editor(s): January 26, 2009
Published electronically: March 18, 2011
Additional Notes: Supported by RFBR (grant nos. 08-01-00151-a, 09-01-00058-a), and by ADTP (grant no. 3341)
Article copyright: © Copyright 2011 American Mathematical Society