On the linear problem arising in the study of a free boundary problem for the Navier-Stokes equations

Author:
V. A. Solonnikov

Original publication:
Algebra i Analiz, tom **22** (2010), nomer 6.

Journal:
St. Petersburg Math. J. **22** (2011), 1023-1049

MSC (2010):
Primary 35Q35, 76D27

DOI:
https://doi.org/10.1090/S1061-0022-2011-01182-3

Published electronically:
August 22, 2011

MathSciNet review:
2760093

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A problem under study arises as a result of linearization of a free boundary problem for Navier-Stokes equations governing the evolution of an isolated mass of a viscous incompressible capillary liquid.

**1.**V. A. Solonnikov,*Solvability of the problem of evolution of an isolated volume of a viscous incompressible capillary fluid*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**140**(1984), 179-186; English transl., J. Soviet Math.**32**(1986), no. 2, 223-228. MR**0765724 (85m:76024)****2.**-,*An initial-boundary value problem for a Stokes system that arises in the study of a problem with a free boundary*, Trudy Mat. Inst. Steklov.**188**(1990), 150-188; English transl., Proc. Steklov Inst. Math.**1991**, no. 3, 191-239. MR**1100542 (92m:76048)****3.**-,*On the stability of uniformly rotating viscous incompressible self-gravitating liquid*, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**348**(2007), 165-208; English transl., J. Math. Sci.**152**(2008), no. 5, 713-740. MR**2743018****4.**-,*On the problem of stability of equilibrium figures of uniformly rotating viscous incompressible liquid*, Instability in Models Connected with Fluid Flows. II, Int. Math. Ser. (N.Y.), vol. 7, Springer, New York, 2008, pp. 189-254. MR**2459267 (2009k:76062)****5.**-,*On the linear problem related to the stability of uniformly rotating self-gravitating liquid*, Probl. Mat. Anal., No. 35, Tamara Rozhkovskaya, Novosibirsk, 2007, pp. 139-159; English transl., J. Math. Sci.**144**(2007), no. 6, 4671-4695. MR**2584390 (2011d:35424)****6.**O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva,*Linear and quasilinear equation of parabolic type*, Nauka, Moscow, 1968; English transl., Transl. Math. Monogr., vol. 23, Amer. Math. Soc., Providence, RI, 1967. MR**0241821 (39:3159a)**; MR**0241822 (39:3159b)****7.**M. S. Agranovich and M. I. Vishik,*Elliptic problems with a parameter and parabolic problems of general type*, Uspekhi Mat. Nauk**19**(1964), no. 3, 53-161; English transl. in Russian Math. Surveys**19**(1964), no. 3. MR**0192188 (33:415)****8.**G. Grubb and V. A. Solonnikov,*Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods*, Math. Scand.**69**(1991), 217-290 (1992). MR**1156428 (93e:35082)****9.**V. A. Solonnikov,*On the stability of uniformly rotating viscous incompressible self-gravitating liquid*, PDMI Preprint 03/2010, 1-101.**10.**J. T. Beale and T. Nishida,*Large-time behavior of viscous surface waves*, Recent Topics in Nonlinear PDE. II (Sendai, 1984), North-Holland Math. Stud., vol. 128, North-Holland, Amsterdam, 1985, pp. 1-14. MR**0882925 (88f:35121)****11.**L. N. Slobodetskiĭ,*Generalized S. L. Sobolev spaces and their applications to the boundary value problems for partial differential equations*, Leningrad. Gos. Ped. Inst. Uchen. Zap.**197**(1958), 54-112. (Russian) MR**0203222 (34:3075)****12.**M. E. Bogovskiĭ,*Solutions of some problems of vector analysis associated with the operators and*, Trudy Sem. S. L. Soboleva**1980**, no. 1, 5-40. (Russian) MR**0631691 (82m:26014)****13.**V. A. Solonnikov,*A priori estimates for solutions of second-order equations of parabolic type*, Trudy Mat. Inst. Steklov.**70**(1964), 133-212. (Russian) MR**0162065 (28:5267)****14.**M. Padula and V. A. Solonnikov,*On local solvability of a problem with a free boundary for Navier-Stokes equations*, Probl. Mat. Anal., No. 50, Tamara Rozhkovskaya, Novosibirsk, 2010, pp. 87-112; English transl. in J. Math. Sci. (to appear).

Retrieve articles in *St. Petersburg Mathematical Journal*
with MSC (2010):
35Q35,
76D27

Retrieve articles in all journals with MSC (2010): 35Q35, 76D27

Additional Information

**V. A. Solonnikov**

Affiliation:
St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

Email:
solonnik@pdmi.ras.ru

DOI:
https://doi.org/10.1090/S1061-0022-2011-01182-3

Keywords:
Navier–Stokes equations,
Laplace–Beltrami operator,
linearization,
free boundary problem

Received by editor(s):
July 8, 2010

Published electronically:
August 22, 2011

Dedicated:
Dedicated to Professor V.M.Babich on the occasion of his 80th birthday

Article copyright:
© Copyright 2011
American Mathematical Society