Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

The product of symbols of $ p^n$th power residues as an Abelian integral


Author: M. A. Ivanov
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 24 (2012), nomer 2.
Journal: St. Petersburg Math. J. 24 (2013), 275-281
MSC (2010): Primary 11A15
DOI: https://doi.org/10.1090/S1061-0022-2013-01238-6
Published electronically: January 22, 2013
MathSciNet review: 3013325
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In accordance with the Hilbert-Shafarevich ideology, the reciprocity law must be an analog of an integral theorem asserting that the Abelian integral of a differential form on a Riemann surface is equal to the sum of residues at singular points. In the present paper, it is shown that the product of the symbols of $ p^n$th power residues is the integral of a certain function.


References [Enhancements On Off] (What's this?)

  • 1. H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. II. Reziprozitätsgesetz, Leipzig-Berlin, 1930; 2, durchges. Aufl., Physica-Verlag, Würzburg-Vienna, 1965. MR 0195848 (33:4045b)
  • 2. D. Hilbert, Gesammelte Abhandlungen. Bd. 1, Springer, Berlin, 1932.
  • 3. L. G. Shnirel'man, On functions in normed algebraicaly closed bodies, Izv. Akad. Nauk SSSR Ser. Mat. 2 (1938), no. 5-6, 487-498. (Russian)
  • 4. I. R. Shafarevich, A general reciprocity law, Mat. Sb. 26(68) (1950), no. 1, 113-146; English transl., Amer. Math. Soc. Transl. Ser. 2, vol. 4, Amer. Math. Soc., Providence, RI, 1956, pp. 73-106. MR 0031944 (11:230f)
  • 5. S. V. Vostokov, An explicit form of the reciprocity law, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 6, 1288-1320; English transl., Math. USSR-Izv. 13 (1978), no. 3, 557-588 (1979). MR 522940 (80f:12014)
  • 6. I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, 2nd ed., Transl. Math. Monogr., vol. 121, Amer. Math. Soc., Providence, RI, 2002. MR 1915966 (2003c:11150)
  • 7. S. V. Vostokov, The classical reciprocity law for power residues as an analog of the abelian integral theorem, Algebra i Analiz 20 (2008), no. 6, 108-118; English transl., St. Petersburg Math. J. 20 (2009), no. 6, 929-936. MR 2530895 (2010g:11005)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11A15

Retrieve articles in all journals with MSC (2010): 11A15


Additional Information

M. A. Ivanov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Petrodvorets, St. Petersburg 198904, Russia
Email: micliva@gmail.com

DOI: https://doi.org/10.1090/S1061-0022-2013-01238-6
Keywords: Power residue symbol, Shnirel′man’s integral
Received by editor(s): March 25, 2011
Published electronically: January 22, 2013
Additional Notes: Supported by RFBR (grant no. 11-01-00588-a)
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society