Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

New examples of simple Jordan superalgebras over an arbitrary field of characteristic 0


Author: V. N. Zhelyabin
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 24 (2012), nomer 4.
Journal: St. Petersburg Math. J. 24 (2013), 591-600
MSC (2010): Primary 16W10; Secondary 17A15
DOI: https://doi.org/10.1090/S1061-0022-2013-01255-6
Published electronically: May 24, 2013
MathSciNet review: 3088008
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a joint paper with the author, I. P. Shestakov constructed a new example of a unital simple special Jordan superalgebra over the real number field. It turned out that this superalgebra is a subsuperalgebra of a Jordan superalgebra of the vector type $ J(\Gamma ,D)$, but it is not isomorphic to a superalgebra of this type. Moreover, the superalgebra of quotients of the constructed superalgebra is isomorphic to a Jordan superalgebra of vector type. Later, a similar example was constructed for Jordan superalgebras over a field of characteristic 0 in which the equation $ t^2+1=0$ is unsolvable. In the present paper, an example is given for a Jordan superalgebra with the same properties over an arbitrary field of characteristic 0. A similar example was discovered also for a Cheng-Kac superalgebra.


References [Enhancements On Off] (What's this?)

  • 1. V. G. Kac, Classification of simple $ Z$-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 5 (1977), no. 13, 1375-1400. MR 0498755 (58:16806)
  • 2. I. L. Kantor, Jordan and Lie superalgebras, determined by a Poisson algebra, Algebra and Analysis (Tomsk, 1989), Amer. Math. Soc. Transl. Ser. 2, vol. 151, Amer. Math. Soc., Providence, RI, 1992, pp. 55-80. MR 1191172 (93j:17004)
  • 3. I. P. Shestakov, Prime alternative superalgebras of arbitrary characteristic, Algebra Logika 36 (1997), no. 6, 675-716; English transl., Algebra Logic 36 (1997), no. 6, 389-412. MR 1657313 (99k:17006)
  • 4. E. Zelmanov, Semisimple finite-dimensional Jordan superalgebras, Lie Algebras and Related Topics, Springer, New York, 2000, pp. 227-243.
  • 5. C. Martinez and E. Zelmanov, Simple finite dimensional Jordan superalgebras of prime characteristic, J. Algebra 236 (2001), no. 2, 575-629. MR 1813492 (2002e:17042)
  • 6. V. G. Kac, C. Martinez, and E. Zelmanov, Graded simple Jordan superalgebras of growth one, Mem. Amer. Math. Soc. 150 (2001), no. 711, 140 pp. MR 1810856 (2001k:17052)
  • 7. M. Racine and E. Zelmanov, Simple Jordan superalgebras with semisimple even part, J. Algebra 270 (2003), no. 2, 374-444. MR 2019625 (2005b:17063)
  • 8. N. Cantarini and V. G. Kac, Classification of linearly compact simple Jordan and generalized Poisson superalgebras, J. Algebra 313 (2007), no. 2, 100-124. MR 2326139 (2008g:17033)
  • 9. V. N. Zhelyabin, Simple special Jordan superalgebras with an associative nil-semisimple even part, Algebra Logika 41 (2002), no. 3, 276-310; English transl., Algebra Logic 41 (2002), no. 3, 152-172. MR 1934537 (2003j:17048)
  • 10. V. N. Zhelyabin and I. P. Shestakov, Simple special Jordan superalgebras with an associative even part, Sibirsk. Mat. Zh. 45 (2004), no. 5, 1046-1072; English transl., Siberian Math. J. 45 (2004), no. 5, 860-882. MR 2108503 (2005i:17041)
  • 11. I. P. Shestakov, Simple $ (-1,1)$-superalgebras, Algebra Logika 37 (1998), no. 6, 721-739; English transl., Algebra Logic 37 (1998), no. 6, 411-422. MR 1680396 (2000e:17012)
  • 12. V. N. Zhelyabin, Differential algebras and simple Jordan superalgebras, Mat. Tr. 12 (2009), no. 2, 41-51. (Russian) MR 2599424 (2011d:17054)
  • 13. -, Differential algebras and simple Jordan superalgebras, Siberian Adv. in Math. 20 (2010), no. 3, 223-230.
  • 14. Shuen Yuan, Differentiably simple rings of prime characteristic, Duke Math. J. 31 (1964), no. 4, 623-630. MR 0167499 (29:4772)
  • 15. A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235-252; English transl. in Math. USSR-Izv. 11 (1977), no. 2. MR 0472792 (57:12482)
  • 16. D. King and K. McCrimmon, The Kantor construction of Jordan superalgebras, Comm. Algebra 20 (1992), no. 1, 109-126. MR 1145328 (92j:17032)
  • 17. K. McCrimmon, Speciality and nonspeciality of two Jordan superalgebras, J. Algebra 149 (1992), no. 2, 326-351. MR 1172433 (93k:17060)
  • 18. D. King and K. McCrimmon, The Kantor doubling process revisited, Comm. Algebra 23 (1995), no. 1, 357-372. MR 1311793 (96b:17033)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 16W10, 17A15

Retrieve articles in all journals with MSC (2010): 16W10, 17A15


Additional Information

V. N. Zhelyabin
Affiliation: S. L. Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences 4, Academician Koptyug prospect, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov street 2, Novosibirsk, 630090, Russia
Email: vicnic@math.nsc.ru

DOI: https://doi.org/10.1090/S1061-0022-2013-01255-6
Keywords: Jordan superalgebra, $(-1,1)$-superalgebra, superalgebra of vector type, differentiably simple algebra, polynomial algebra, projective module
Received by editor(s): September 13, 2010
Published electronically: May 24, 2013
Additional Notes: Supported by the RFBR grant 09-01-00157, by the analytic Departmental Special Program “Development of the scientific potential of Higher School” of the Federal Educational Agency (project 2.1.1.419), by the Special Federal Program “Scientific and Pedagogical Staff of Innovative Russia for 2009–2013” (state contracts nos. 02.740.11.0429, 02.740.11.5191, 14.740.11.0346)
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society