Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On a certain pair of measures on $ \ell_p$


Author: E. A. Riss
Translated by: the author
Original publication: Algebra i Analiz, tom 25 (2013), nomer 1.
Journal: St. Petersburg Math. J. 25 (2014), 105-115
MSC (2010): Primary 28C20
DOI: https://doi.org/10.1090/S1061-0022-2013-01281-7
Published electronically: November 20, 2013
MathSciNet review: 3113430
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A pair of finite Borel measures $ \mu $ and $ \nu $ on $ \ell _p$, $ 1\le p< \infty $, $ \mu \ne \nu $, is constructed so that the identity $ \mu (B(x,r))=\nu (B(x,r))$ is fulfilled for all balls $ B(x,r)$ with centers $ x \in \ell _p$ and radii $ r<R(x)$, where $ R(x)>0$ for a.e. $ x$.


References [Enhancements On Off] (What's this?)

  • 1. D. Preiss and S. J. Tišer, Measures in Banach spaces are determined by their values on balls, Mathematika 38 (1991), no. 2, 391-397. MR 1147839 (93a:46080)
  • 2. E. A. Riss, Measures that coincide on balls, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 177 (1989), 122-128; English transl., J. Soviet Math. 24 (1984), no. 3. MR 1053134 (91m:60020)
  • 3. R. O. Davies, Measures not approximable or not specifiable by means of balls, Mathematika 18 (1971), 157-160. MR 0310162 (46:9264)
  • 4. M. Studený, On the differentiation theorem in metric groups, Comment. Math. Univ. Carolin. 24 (1983), no. 2, 223-232. MR 711260 (84j:28007)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 28C20

Retrieve articles in all journals with MSC (2010): 28C20


Additional Information

E. A. Riss
Affiliation: Hertzen Russia State Pedagogical University, Moika 48, St. Petersburg 191186, Russia
Email: e.riss@bk.ru

DOI: https://doi.org/10.1090/S1061-0022-2013-01281-7
Keywords: Measures on Banach spaces, small ball problem
Received by editor(s): May 4, 2012
Published electronically: November 20, 2013
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society