Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

On the unramified Brauer group of a homogeneous space


Author: M. Borovoĭ
Translated by: the author
Original publication: Algebra i Analiz, tom 25 (2013), nomer 4.
Journal: St. Petersburg Math. J. 25 (2014), 529-532
MSC (2010): Primary 14F22; Secondary 14M17, 14L10
DOI: https://doi.org/10.1090/S1061-0022-2014-01304-0
Published electronically: June 5, 2014
MathSciNet review: 3184614
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new proof of the following theorem is given: for any connected linear algebraic group $ G$ over an algebraically closed field $ k$ of characteristic 0 and any connected closed subgroup $ H$ of $ G$, the unramified Brauer group of $ G/H$ vanishes.


References [Enhancements On Off] (What's this?)

  • 1. F. A. Bogomolov, Brauer groups of the fields of invariants of algebraic groups, Mat. Sb. 180 (1989), no. 2, 279-293; English transl., Math. USSR-Sb. 66 (1990), no. 1, 285-299. MR 993459 (90k:14008)
  • 2. M. Borovoi, The Brauer-Manin obstruction to the Hasse principle for homogeneous spaces with connected or abelian stabilizer, J. Reine Angew. Math. 473 (1996), 181-194. MR 1390687 (97g:11042)
  • 3. M. Borovoi, C. Demarche, and D. Harari, Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes, Ann. Sci. École Norm. Súper. (4) 46 (2013), no. 4, 651-692. MR 3098426
  • 4. M. Borovoi and B. È. Kunyavskiĭ, Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group, J. Algebra 225 (2000), no. 2, 804-821. MR 1741563 (2001h:14017)
  • 5. J.-L. Colliot-Thélène and B. È. Kunyavskiĭ, Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes, J. Algebraic Geom. 15 (2006), no. 4, 733-752. MR 2237268 (2007c:11050)
  • 6. J.-L. Colliot-Thélène and J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the rationality problem), Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 113-186. MR 2348904 (2008m:13010)
  • 7. J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80. MR 631309 (83d:12010)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 14F22, 14M17, 14L10

Retrieve articles in all journals with MSC (2010): 14F22, 14M17, 14L10


Additional Information

M. Borovoĭ
Affiliation: Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
Email: borovoi@post.tau.ac.il

DOI: https://doi.org/10.1090/S1061-0022-2014-01304-0
Keywords: Unramified Brauer group, homogeneous space, linear algebraic group
Received by editor(s): August 7, 2012
Published electronically: June 5, 2014
Additional Notes: The author was partially supported by the Hermann Minkowski Center for Geometry
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society