Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Chebyshev polynomials with zeros on the circle and related topics


Authors: L. S. Maergoĭz and N. N. Rybakova
Translated by: S. V. Kislyakov
Original publication: Algebra i Analiz, tom 25 (2013), nomer 6.
Journal: St. Petersburg Math. J. 25 (2014), 965-979
MSC (2010): Primary 41A50
DOI: https://doi.org/10.1090/S1061-0022-2014-01325-8
Published electronically: September 8, 2014
MathSciNet review: 3234841
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A description is given for the Chebyshev monic polynomial $ T_n^*$ of degree $ n$ with zeros on the circle and with the smallest deviation from zero on an arc. The construction of the extremal trigonometric polynomial of order $ n/2$ associated with $ T_n^*$ is investigated and dual extremal problems are studied. The results are applied to estimating an optimal error for extrapolation from a finite set in the Wiener class.


References [Enhancements On Off] (What's this?)

  • 1. I. P. Natanson, Constructive theory of function, Gosudarstv. Izdat. Tech.-Teor. Lit., Moscow, 1949. (Russian) MR 0034464 (11:591c)
  • 2. V. K. Ivanov, The problem of the minimax of a system of linear functions, Mat. Sb. 28 (1951), no. 3, 685-706. (Russian) MR 0042482 (13:119b)
  • 3. M. M. Lavrent'ev, Some ill-posed problems of mathematical physics, Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1962. (Russian) MR 0222435 (36:5487)
  • 4. J. P. Thiran and C. Detaille, Chebyshev polynomials on circular arcs in the complex plane, Progress in Approximation Theory, Acad. Press, Boston, MA, 1991, pp. 771-786. MR 1114813 (92k:41036)
  • 5. G. M. Goluzin, Geometrical theory of functions of a complex variable, Nauka, Moscow, 1966. (Russian) MR 0219714 (36:2793)
  • 6. S. V. Tyshkevich, On Chebyshev polynomials on arcs of a circle, Mat. Zametki 81 (2007), no. 6, 952-954; English transl., Math. Notes 81 (2007), no. 5-6, 851-853. MR 2349111 (2008k:42088)
  • 7. L. S. Maergoiz and N. N. Rybakova, Chebyshev polynomials with zeros on a circle and adjacent problems, Preprint Sibirsk. Federal Univ., Krasnoyarsk, 2012. (Russian)
  • 8. V. I. Smirnov and N. A. Lebedev, The constructive theory of functions of a complex variable, Nauka, Moscow, 1964. MR 0171926 (30:2152)
  • 9. V. L. Goncharov, The theory of interpolation and approximation of functions, Gosudarstv. Izdat. Tech.-Teor. Lit., Moscow, 1954. (Russian) MR 0067947 (16:803e)
  • 10. N. I. Ahiezer, Lectures in the theory of approximation, Nauka, Moscow, 1965. (Russian) MR 0188672 (32:6108)
  • 11. L. S. Maergoiz, Chebyshev polynomials with zeros on a given compact and their applications, Complex Analysis and its Applications, Tez. Dokl. Intern. School-Conf., Krasnodar. Univ., Krasnodar, 2005, pp. 75-76. (Russian)
  • 12. V. S. Videnskiĭ, Extremal estimates for the derivative of trigonometric polynomial on an interval shorter than its period, Dokl. Akad. Nauk SSSR 130(1960), no. 1, 13-16; English transl., Soviet Math. Dokl. 1 (1960), 5-8. MR 0117493 (22:8272)
  • 13. A. F. Timan, Theory of approximation of functions of a real variable, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960. (Russian) MR 0117478 (22:8257)
  • 14. L. S. Maergoiz and N. N. Rybakova, Chebyshev polynomials with a zero set on a circle, Algorithm. Anal. Instable Problems, Tez. Dokl. Intern. Conf., Ural'sk. Univ., Ekaterinburg, 2008, pp. 73-74. (Russian)
  • 15. -, Chebyshev polynomials with a zero set on a circle, Dokl. Akad. Nauk 426 (2009), no. 1, 26-28; English transl., Dokl. Math. 79 (2009), no. 3, 319-321. MR 2543208 (2010f:30003)
  • 16. -, Chebyshev polynomials with a zero set on a circle and adjacent problems, Preprint Inst. Phys. Sibirsk. Otdel. Ross. Akad. Nauk., no. 312M, Krasnoyarsk, 2008. (Russian)
  • 17. A. L. Lukashov and S. V. Tyshkevich, Extremal polynomials on circular arcs with zeros on these arcs, Izv. Nats. Akad. Nauk Armenii Mat. 44 (2009), no. 3, 41-50; English transl., J. Contemp. Math. Anal. 44 (2009), no. 3, 172-179. MR 2650564 (2011k:30007)
  • 18. A. G. Marchuk and K. Yu. Osipenko, Best approximation of functions defined with an error at a finite number of points, Mat. Zametki 17 (1975), no. 3, 359-368. (Russian) MR 0407503 (53:11278)
  • 19. L. S. Maergoiz, An optimal estimate for extrapolation from a finite set in the Wiener class, Sibirsk. Mat. Zh. 41 (2000), no. 6, 1363-1375; English transl., Sib. Math. J. 41 (2000), no. 6, 1126-1136. MR 1811416 (2002f:30004)
  • 20. V. V. Arestov and A. S. Mendelev, Trigonometric polynomials of least deviation from zero in measure and related problems, J. Approx. Theory 162 (2010), no. 10, 1852-1878. MR 2728049 (2011i:41029)
  • 21. A. V. Olesov, On the application of conformal mappings to inequalities for trigonometric polynomials, Mat. Zametki 76 (2004), no. 3, 396-408; English transl., Math. Notes 76 (2004), no. 3-4, 368-378. MR 2113082 (2005i:41016)
  • 22. K. Schiefermayr, Geometric properties of inverse polynomial images, Approximation Theory XIII (San Antonio, 2010), Springer Proc. Math., vol. 13, Springer, New York, 2012, pp. 277-287. MR 3026216

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 41A50

Retrieve articles in all journals with MSC (2010): 41A50


Additional Information

L. S. Maergoĭz
Affiliation: Siberian Federal University, Svobodnyĭ pr. 83, Krasnoyarsk 660041, Russia
Email: bear.lion@mail.ru

N. N. Rybakova
Affiliation: Siberian Federal University, Svobodnyĭ pr. 83, Krasnoyarsk 660041, Russia
Email: ryba-kr@yandex.ru

DOI: https://doi.org/10.1090/S1061-0022-2014-01325-8
Keywords: Polynomial of smallest deviation from zero, Chebyshev alternance
Received by editor(s): March 1, 2012
Published electronically: September 8, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society