Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Homogenization of the Cauchy problem for parabolic systems with periodic coefficients


Author: Yu. M. Meshkova
Translated by: the author
Original publication: Algebra i Analiz, tom 25 (2013), nomer 6.
Journal: St. Petersburg Math. J. 25 (2014), 981-1019
MSC (2010): Primary 35K46
DOI: https://doi.org/10.1090/S1061-0022-2014-01326-X
Published electronically: September 8, 2014
MathSciNet review: 3234842
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In $ L_2(\mathbb{R}^d;\mathbb{C}^n)$, a class of matrix second order differential operators $ \mathcal {B}_\varepsilon $ with rapidly oscillating coefficients (depending on $ \mathbf {x}/\varepsilon $) is considered. For a fixed $ s>0$ and small $ \varepsilon >0$, approximation is found for the operator $ \exp (-\mathcal {B}_\varepsilon s)$ in the $ (L_2\to L_2)$- and $ (L_2\to H^1)$-norm with an error term of order of $ \varepsilon $. The results are applied to homogenization of solutions of the parabolic Cauchy problem.


References [Enhancements On Off] (What's this?)

  • [BaPa] N. S. Bakhvalov and G. P. Panasenko, Homogenization of processes in periodic media, Nauka, Moscow, 1984; English transl., Math. Appl. (Soviet Ser.), vol. 36, Kluwer Acad. Publ., Dordrecht, 1989. MR 797571 (86m:73049), MR 1112788 (92d:73002)
  • [BeLP] A. Bensoussan, J. -L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., vol. 5, North-Holland Publ. Co., Amsterdam-New York, 1978. MR 503330 (82h:35001)
  • [BSu1] M. Sh. Birman and T. A. Suslina, Second-order periodic differential operators. Threshold properties and homogenization, Algebra i Analiz 15 (2003), no. 5, 1-108; English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639-714. MR 2068790 (2005k:47097)
  • [BSu2] -, Threshold approximations with corrector for the resolvent of a factorized selfadjoint family, Algebra i Analiz 17 (2005), no. 5, 69-90; English transl., St. Petersburg Math. J. 17 (2006), no. 5, 745-762. MR 2241423 (2008d:47047)
  • [BSu3] -, Homogenization with corrector term for periodic elliptic differential operators, Algebra i Analiz 17 (2005), no. 6, 1-104; Ensligh transl., St. Petersburg Math. J. 17 (2006), no. 6, 897-973. MR 2202045 (2006k:35011)
  • [BSu4] -, Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class $ H^1(\mathbb{R}^d)$, Algebra i Analiz 18 (2006), no. 6, 1-130; English transl., St. Petersburg Math. J. 18 (2007), no. 6, 857-955. MR 2307356 (2008d:35008)
  • [V] E. S. Vasilevskaya, Homogenization of a parabolic Cauchy problem with periodic coefficients taking the corrector into account, Algebra i Analiz 21 (2009), no. 1, 3-60; English transl., St. Petersburg Math. J. 21 (2010), no. 1, 1-41. MR 2553050 (2010k:35035)
  • [VSu1] E. S. Vasilevskaya and T. A. Suslina, Threshold approximations of a factorized selfadjoint operator family with the first and second correctors taken into account, Algebra i Analiz 23 (2011), no. 2, 102-146; English transl., St. Petersburg Math. J. 23 (2012), no. 2, 275-308. MR 2841674 (2012g:47052)
  • [VSu2] -, Homogenization of parabolic and elliptic periodic operators in $ L_2(\mathbb{R} ^d)$ with the first and second correctors taken into account, Algebra i Analiz 24 (2012), no. 2, 1-103; English transl., St. Petersburg Math. J. 24 (2013), no. 2, 185-261. MR 3013323
  • [ZhKO] V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators, Nauka, Moscow, 1993; English. transl., Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. MR 1318242 (96h:35003a), 1329546 (96h:35003b)
  • [ZhPas] V. V. Zhikov and S. E. Pastukhova, Estimates of homogenization for a parabolic equation with periodic coefficients, Russ. J. Math. Phys. 13 (2006), no. 2, 224-237. MR 2262826 (2007k:35025)
  • [K] T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren Math. Wiss., Bd. 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617 (53:11389)
  • [Su1] T. A. Suslina, On the homogenization of periodic parabolic systems, Funktsional. Anal. i Prilozen. 38 (2004), no. 4, 86-90; English transl., Funct. Anal. Appl. 38 (2004), no. 4, 309-312. MR 2117512 (2005j:35008)
  • [Su2] -, Homogenization of a periodic parabolic Cauchy problem, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. (2), vol. 220, Amer. Math. Soc., Providence, RI, 2007, pp. 201-233. MR 2343612 (2008k:35030)
  • [Su3] -, Homogenization of periodic second order differential operators including first order terms, Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. (2), vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 227-252. MR 2509787 (2010j:35043)
  • [Su4] -, Homogenization of the parabolic Cauchy problem in the Sobolev class $ H^1(\mathbb{R} ^d)$, Funktsional. Anal. i Prilozen. 44 (2010), no. 4, 91-96; English transl., Funct. Anal. Appl. 44 (2010), no. 4, 318-322. MR 2768568 (2012k:35040)
  • [Su5] -, Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $ H^1(\mathbb{R}^d)$, Math. Model. Nat. Phenom. 5 (2010), no. 4, 390-447. MR 2662463 (2011g:35031)
  • [Su6] -, Homogenization in the Sobolev class $ H^1(\mathbb{R}^d)$ for second-order periodic elliptic operators with the inclusion of first-order terms, Algebra i Analiz 22 (2010), no. 1, 108-222; English transl., St. Petersburg Math. J. 22 (2011), no. 1, 86-162. MR 2641084 (2011d:35041)
  • [Su7] -, Approximation of the resolvent of a two-parametric quadratic operator pencil near the bottom of the spectrum, Algebra i Analiz 25 (2013), no. 5, 221-251.MR 3184612

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35K46

Retrieve articles in all journals with MSC (2010): 35K46


Additional Information

Yu. M. Meshkova
Affiliation: Department of Physics, St. Petersburg State University, Ul′yanovskaya 3, Petrodvorets, St. Petersburg 198504, Russia
Email: juliavmeshke@yandex.ru

DOI: https://doi.org/10.1090/S1061-0022-2014-01326-X
Keywords: Parabolic equation, Cauchy problem, homogenization, corrector
Received by editor(s): April 1, 2013
Published electronically: September 8, 2014
Additional Notes: Supported by the Ministry of education and science of Russian Federation, project 07.09.2012 no. 8501, 2012-1.5-12-000-1003-016
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society