Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Full investigation of the matrix equation $ AX+XB=C$ and specifically of the equation $ AX-XA=C$


Author: E. L. Rabkin
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 26 (2014), nomer 1.
Journal: St. Petersburg Math. J. 26 (2015), 117-130
MSC (2010): Primary 15A24
DOI: https://doi.org/10.1090/S1061-0022-2014-01333-7
Published electronically: November 21, 2014
MathSciNet review: 3234807
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the paper, the matrix equations $ AX-XA=C$ and $ AX+XB=C$ (the Lyapunov equation) are fully investigated and solved if a solution exists. As special cases, exact expressions for the resolvent of the equation $ (E-A)X=0$ are obtained for a finite-dimensional operator $ A$ and the Fredholm equation of the second kind is studied completely in the finite-dimensional case. The form of a matrix $ C$ with nonnegative entries is found such that it is the commutator of a given matrix $ A$ with nonnegative entries and some other matrix $ X$ with nonnegative entries.


References [Enhancements On Off] (What's this?)

  • 1. F. G. Frobenius, Üeber die vertauschbare Matrizen, Sitz. Akad. Wiss. Phys.-Math. Klasse, Berlin, 1896, 601-614.
  • 2. F. P. Gantmaher, The theory of matrices, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953; English transl. Chelsea Publ. Co., New York, 1959. MR 0065520 (16:4381); MR 0107647 (21:6372a)
  • 3. R. Bellman, Introduction to matrix analysis, McGraw-Hill Book Co., New York, 1960. MR 0122820 (23:A153)
  • 4. A. K. Demenchuk and E. K. Makarov, A polynomial formula for selfadjoint solutions of the matrix equation $ AX-XA=C$ with a normal coefficient, Dokl. Nats. Akad. Nauk Belarusi 52 (2008), no. 2, 5-10. (Russian) MR 2518598 (2010a:15043)
  • 5. J. Bračič, R. Drnovšek, Yu. B. Farforovskaya, E. L. Rabkin, and J. Zemanek, On positive commutators, Positivity 14 (2010), no. 3, 431-439. MR 2680506 (2011g:47085)
  • 6. L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Fizmatgiz, Moscow, 1959; English transl., Intern. Ser. Monogr. Pure Appl. Math., vol. 46, Macmillan Co., New York, 1964. MR 0119071 (22:9837); MR 0213845 (35:4699)
  • 7. I. M. Gel'fand, D. A. Raikov, and G. E. Shilov, Commutative normed rings, Moscow, 1960; English transl., Chelsea Publ. Co., New York, 1964. MR 0123921 (23:A1242); MR 0205105 (34:4940)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 15A24

Retrieve articles in all journals with MSC (2010): 15A24


Additional Information

E. L. Rabkin
Affiliation: Division of Mathematics, Bonch-Bruevich St. Petersburg State University of Telecommunications, 22 pr. Bol′shevikov, St. Petersburg, Russia
Email: rabk@sut.ru

DOI: https://doi.org/10.1090/S1061-0022-2014-01333-7
Keywords: Matrix, commutator, Lyapunov equation
Received by editor(s): October 1, 2012
Published electronically: November 21, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society