Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Proof of the Busemann conjecture for $ G$-spaces of nonpositive curvature


Author: P. D. Andreev
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 26 (2014), nomer 2.
Journal: St. Petersburg Math. J. 26 (2015), 193-206
MSC (2010): Primary 53C70
DOI: https://doi.org/10.1090/S1061-0022-2015-01336-8
Published electronically: February 3, 2015
MathSciNet review: 3242034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that every simply connected Busemann $ G$-space of nonpositive curvature is homeomorphic to $ \mathbb{R}^n$ for some positive integer $ n$. As a consequence, the well-known conjecture that every Busemann $ G$-space is a topological manifold becomes confirmed for the $ G$-spaces of nonpositive curvature.


References [Enhancements On Off] (What's this?)

  • 1. H. Busemann, Metric methods in Finsler geometry and in the foundations of geometry, Ann. of Math. Stud., vol. 8, Princeton Univ. Press, Princeton, NJ, 1942. MR 0007251 (4:109e)
  • 2. -, On spaces in which two points determine a geodesic, Trans. Amer. Math. Soc. 54 (1943), 171-184. MR 0009860 (5:215a)
  • 3. -, The geometry of geodesics, Academic Press Inc., New York, 1955. MR 0075623 (17:779a)
  • 4. B. Krakus, Any $ 3$-dimensional $ G$-space is a manifold, Bull. Acad. Polon. Sci. 16 (1968), 737-780. MR 0236856 (38:5150)
  • 5. P. Thurston, 4-dimensional Busemann $ G$-spaces are 4-manifolds, Differential. Geom. Appl. 6 (1996), no. 3, 245-270. MR 1408310 (97m:57030)
  • 6. V. N. Berestovskiĭ, Busemann spaces with upper-bounded Aleksandrov curvature, Algebra i Analiz 14 (2002), no. 5, 3-18; English transl., St. Petersburg Math. J. 14 (2003), no. 5, 713-723. MR 1970330 (2004g:53086)
  • 7. H. Busemann, Spaces with non-positive curvature, Acta Math. 80 (1948), 259-310. MR 0029531 (10:623g)
  • 8. S. Alexander and R. Bishop, The Hadamard-Cartan theorem in locally convex metric spaces, Enseign. Math. 36 (1990), no. 3-4, 309-320. MR 1096422 (92c:53044)
  • 9. V. N. Berestovskii, On the problem of the finite dimensionality of a Busemann $ G$-space, Sibirsk. Mat. Z. 18 (1977), no. 1, 219-221; English transl., Sib. Math. J. 18 (1977), no. 1, 159-161. MR 0442868 (56:1243)
  • 10. V. N. Berestovskiĭ, D. M. Halverson, and D. Repovš, Locally $ G$-homogeneous Busemann $ G$-spaces, Differential Geom. Appl. 29 (2011), no. 3, 299-318. MR 2795840 (2012g:53153)
  • 11. A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, IRMA Lectures Math. Theor. Phys., vol. 6, EMS, Zürich, 2005. MR 2132506 (2005k:53042)
  • 12. T. Gelander, A.  Karlsson, and G. Margulis, Superrigidity, generalized harmonic maps and uniformly convex spaces, Geom. Func. Anal. 17 (2008), no. 5, 1524-1550. MR 2377496 (2009a:53074)
  • 13. P. Andreev, Geometric constructions in the class of Busemann nonpositively curved spaces, J. Math. Phys. Anal. Geom. 5 (2009), no. 1, 25-37. MR 2528398 (2010d:53082)
  • 14. W. Rinow, Die innere Geometrie der metrischen Räume, Grundlehren Math. Wiss., vol. 105, Springer-Verlag, Berlin, 1961. MR 0123969 (23:A1290)
  • 15. B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z. 231 (1999), no. 3, 409-456. MR 1704987 (2000m:53053)
  • 16. P. D. Andreev, A. D. Aleksandrov's problem for spaces of nonpositive curvature in the sense of Busemann, Izv. Vysh. Uchebn. Zaved. Fiz. 9 (2010), 10-35; English transl., Russian Math. (Iz. VUZ) 54 (2010), no. 9, 7-29. MR 2789304 (2012b:53062)
  • 17. V. A. Zorich, Mathematical analysis. II, Nauka, Moscow, 1984; English transl., Universitext, Springer-Verlag, Berlin, 2004. MR 2033095 (2004i:00002b)
  • 18. P. S. Aleksandrov, Introduction to dimension theory: An introduction to the theory of topological spaces and the general theory of dimension, Nauka, Moscow, 1973. (Russian) MR 0365524 (51:1776)
  • 19. W. Hurewich and H. Wallman, Dimension theory, Princeton Math. Ser., vol. 4, Princeton Univ. Press, Princeton, N.J., 1941. MR 0006493 (3:312b)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 53C70

Retrieve articles in all journals with MSC (2010): 53C70


Additional Information

P. D. Andreev
Affiliation: Northern (Arctic) Lomonosov Federal University, 17, nab. Severnoĭ Dviny, Arkhangelsk 163002, Russia
Email: pdandreev@mail.ru

DOI: https://doi.org/10.1090/S1061-0022-2015-01336-8
Keywords: $G$-spaces, nonpositive curvature, Busemann conjecture
Received by editor(s): April 12, 2013
Published electronically: February 3, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society