Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Spectral analysis of a fourth order differential operator with periodic and antiperiodic boundary conditions


Author: D. M. Polyakov
Translated by: S. Kislyakov
Original publication: Algebra i Analiz, tom 27 (2015), nomer 5.
Journal: St. Petersburg Math. J. 27 (2016), 789-811
MSC (2010): Primary 34L20
DOI: https://doi.org/10.1090/spmj/1417
Published electronically: July 26, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By the method of similar operators, the spectral properties of a fourth order differential operator are studied under periodic or semiperiodic boundary conditions. The spectrum asymptotics is obtained, together with some estimates for the spectral resolution for the operator in question. Also, the operator semigroup is constructed whose generator is equal to minus the operator under study.


References [Enhancements On Off] (What's this?)

  • 1. S. G. Mikhlin, Variational methods in mathematical physics, 2nd ed., Nauka, 1970; English transl., Fist edition, Pergamon Press Book, New York, 1964. MR 0172493 (30:2712)
  • 2. L. Collatz, Eigenwertaufgaten mit technischen Anweddungen, Math. Anwendungen Phys. Tech., Bd. 19, Akad. Verlag, Leipzig, 1949. MR 0031337
  • 3. V. A. Yakubovich and V. M. Starzhinskiĭ, Linear differential equations with periodic coefficients and their applications, Nauka, Moscow, 1972; English transl., Halsted Press, New-York, 1975. MR 0364740 (51:994)
  • 4. E. Korotyaev and I. Lobanov, Schrödinger operators on zigzag nanotubes, Ann. Henri Poincare 8 (2007), no. 6, 1151-1176. MR 2355344
  • 5. A. Badanin and E. Korotyaev, Spectral asymptotics for periodic fourth-order operators, Int. Math. Res. Not. IMRN 2005, no. 45, 2775-2814. MR 2182471
  • 6. -, Spectral estimates for a fourth-order periodic operator, Algebra i Analiz 22 (2010), no. 5, 1-48; English transl., St. Petersburg Math. J. 22 (2010), no. 5, 703-736. MR 2828825
  • 7. -, Eigenvalue asymptotics for fourth order operators on the unit interval, arXiv:1309. 3449.
  • 8. -, Even order periodic operators on the real line, Int. Math. Res. Not. IMRN 2012, no. 5, 1143-1194. MR 2899961
  • 9. O. A. Veliev, On the nonself-adjoint ordinary differential operators with periodic boundary conditions, Israel J. Math. 176 (2010), 195-207. MR 2653191
  • 10. V. Mikhailets and V. Molyboga, Singular eigenvalue problems on the circle, Methods Funct. Anal. Topology 10 (2004), no. 3, 44-53. MR 2092532
  • 11. -, Uniform estimates for the semi-periodic eigenvalues of the singular differential operators, Methods Funct. Anal. Topology 10 (2004), no. 4, 30-57. MR 2109216
  • 12. V. Molyboga, Estimates for periodic eigenvalues of the differential operator $ {(-1)^{m}d^{2m}/dx^{2m}+V}$ with $ V$-distribution, Methods Funct. Anal. Topology 9 (2003), no. 2, 163-178. MR 1999778
  • 13. M. A. Naimark, Linear differential operators, 2nd ed., revised and augmented, Nauka, Moscow, 1969; English transl., Pt. I, II, Frederic Ungar Publ. Co., New York, 1967-1968. MR 0216050 (35:6885), MR 0262880 (41:7485)
  • 14. P. Dzhakov and B. S. Mityagin, Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), no. 4, 77-182; English transl., Russian Math. Surveys 61 (2006), no. 4, 663-766. MR 2279044
  • 15. T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren Math. Wiss., Bd. 132, Springer-Verlag, Berlin, 1976. MR 0407617
  • 16. N. Dunford and J. T. Schwartz, Linear operators. Pt. III. Spectral operators, Pure Appl. Math., vol. 7, Intersci. Publ., New York, 1971. MR 0421888 (54:1009)
  • 17. M. S. Agranovich, Spectral properties of diffraction problems, in: Generalized method of eigenoscillations in diffraction theory, Nauka, Moscow, 1974, pp. 289-416; English transl., Wilew, Berlin, 1999. MR 1713196
  • 18. A. G. Baskakov, Methods of abstract harmonic analysis in the theory of perturbations of linear operators, Sibirsk. Mat. Zh. 24 (1983), no. 1, 21-39; English transl., Sib. Math. J. 24 (1983), no. 1, 17-32. MR 688589
  • 19. -, The averaging method in the theory of perturbations of linear differential operators, Differ. Uravn. 21 (1985), no. 4, 555-562; English transl., Differ. Equ. 21 (1985), no. 4, 357-362. MR 791103
  • 20. -, A theorem on spliting of an operator and some related problems in the analytic theory of perturbations, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 3, 435-457; English transl., Math. USSR-Izv. 28 (1987), no. 3, 421-444. MR 854591
  • 21. -, Spectral analysis of perturbed non-quasi-analytic and spectral operators, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 4, 3-32; English transl., Izv. Math. 45 (1995), no. 1, 1-31. MR 1307054
  • 22. A. G. Baskakov, A. V. Derbushev, and A. O. Sherbakov, The method of similar operators in the spectral analysis of the nonselfadjoint Dirac operator with nonsmooth potential, Izv. Ross. Akad. Nauk Ser. Mat. 75 (2011), no. 3, 3-28; English transl., Izv. Math. 75 (2011), no. 3, 445-469. MR 2847780
  • 23. D. M. Polyakov, Spectral analysis fourth-order nonselfajoint operator with nonsmooth coefficients, Sibirsk. Mat. Zh. 56 (2015), no. 1, 165-184; English transl., Sib. Math. J. 56 (2015), no. 1, 138-154. MR 3407948
  • 24. -, On spectral properties of fourth-order differential operator, Vestnik VGU. Ser. fiz.-mat. 1 (2012), 179-181. (Russian)
  • 25. -, On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions, Izv. Vyssh. Uchebn. Zaved. Mat. 2015, no. 5, 75-79; English transl., Russian Math. (Iz.VUZ) 59 (2015), no. 5, 64-68. MR 3374274
  • 26. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert space, Nauka, Moscow, 1965; English transl., Transl. Math. Monogr., vol. 18, Amer. Math. Soc., Providence, RI, 1969. MR 0246142 (39:7447)
  • 27. A. Zygmund, Trigonometric series. Vol. I, Cambridge Univ. Press, London, 1968. MR 0236587
  • 28. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag, Berlin, 1981. MR 610244
  • 29. K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, of Grad. Texts in Math., vol. 194, Springer-Verlag, New York, 2000. MR 1721989

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 34L20

Retrieve articles in all journals with MSC (2010): 34L20


Additional Information

D. M. Polyakov
Affiliation: Institute of Mathematics, Voronezh State University, Universitetskaya pl. 1, Voronezh 394006, Russia
Email: DmitryPolyakow@mail.ru

DOI: https://doi.org/10.1090/spmj/1417
Keywords: Spectrum of an operator, fourth order differential operator, spectrum asymptotics, equiconvergence of spectral resolutions, method of similar operators
Received by editor(s): October 21, 2014
Published electronically: July 26, 2016
Additional Notes: Supported by RFBR (grants 14-01-31196 and 15-31-20241) and by RSF (grant 14-21-00066; Section 4) for investigations done at the Voronezh State University
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society