Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Order and geometric properties of the set of Banach limits


Authors: E. Alekhno, E. Semenov, F. Sukochev and A. Usachev
Translated by: the authors
Original publication: Algebra i Analiz, tom 28 (2016), nomer 3.
Journal: St. Petersburg Math. J. 28 (2017), 299-321
MSC (2010): Primary 46B15
DOI: https://doi.org/10.1090/spmj/1452
Published electronically: March 29, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A positive functional $ B$ on the space of bounded sequences $ \ell _\infty $ is called a Banach limit if $ \Vert B\Vert _{\ell _\infty ^*}=1$ and $ B(x_1, x_2, x_3, \ldots ) = B(0, x_1, x_2, \ldots )$ for every $ (x_1, x_2, x_3, \ldots ) \in \ell _\infty $. The set of all Banach limits is denoted by $ \mathfrak{B}$ and the set of its extreme points is denoted by $ \mathrm {ext}\thinspace \mathfrak{B}$. Various properties of these sets are studied. For instance, there exists $ B \in \mathrm {ext}\thinspace \mathfrak{B}$ such that $ Bx = 0$ if $ x \in \ell _\infty $ and $ \lim _{n \to \infty }(\vert x_1\vert+\cdots +\vert x_n\vert)/n = 0.$ The set $ \mathfrak{B}$ fails to possess the $ \mathrm {FP}$-property for an affine nonexpansive sequentially weak$ ^*$ continuous mapping. A general result is proved, which implies that there is a wide class of subspaces of $ \ell _\infty $, defined in terms of Banach limits, that are not complemented in $ \ell _\infty $. In particular, this class includes the stabilizer $ \mathcal {D}(ac_0)$ and the ideal stabilizer $ \mathcal {I}(ac_0)$ of the subspace $ ac_0$ of almost convergent sequences. In the second part of the paper, the object of study is the set $ \mathfrak{B}(\sigma _m)$ of all Banach limits invariant under the dilation operator $ \sigma _m$, $ m\in {\mathbb{N}}$ on $ \ell _\infty $ given by

$\displaystyle \sigma _m(x_1,x_2,\ldots )=(\underbrace {x_1,x_1,\ldots ,x_1}_m, \underbrace {x_2,x_2,\ldots ,x_2}_m, \ldots ). $

If $ m\geq 2$, then for all $ i\in \mathbb{N}$, $ i\geq 2$, the inclusion $ \mathfrak{B}(\sigma _m)\subseteq \mathfrak{B}(\sigma _{m^i})$ is proper; there exists $ B\in \mathfrak{B}(\sigma _m)$ such that $ B\notin \mathfrak{B}(\sigma _n)$ for all $ n\in F_m=\mathbb{N}\setminus \{1,m,m^2,m^3,\ldots \}$ and $ \Vert B-B_1\Vert _{l_\infty ^*}=2$ for all $ B_1\in \mathfrak{B}(\sigma _n)$ if $ n^j\in F_m$ for all $ j\in \mathbb{N}$. If $ B_1 \in \mathfrak{B}(\sigma _m)$, $ B_2 \in \mathrm {ext}\thinspace \mathfrak{B}$, then $ \Vert B_1 - B_2\Vert _{\ell _\infty ^*}=2$. Moreover, the cardinalities of the extreme point are estimated for some subsets of $ \mathfrak{B}$. In particular, $ \mathrm {card}\thinspace \big (\mathrm {ext}\thinspace \bigcap _{m=1}^\infty \mathfrak{B}(\sigma _m)\big ) = 2^\mathfrak{c}$.

References [Enhancements On Off] (What's this?)

  • 1. E. A. Alekhno, Some special properties of Mazur's functionals. II, Proc. Internat. Conf. AMADE-2006, vol. 2, Minsk, 2006, pp. 17-23.
  • 2. -, Superposition operator on the space of sequences almost converging to zero, Cent. Eur. J. Math. 10 (2012), no. 2, 619-645. MR 2886562
  • 3. -, On Banach-Mazur limits, Indag. Math. (N.S.) 26 (2015), no. 4, 581-614. MR 3371963
  • 4. E. A. Alekhno, E. M. Semenov, F. A. Sukochev, and A. S. Usachev, Order properties of a set of Banach limits, Dokl. Akad. Nauk 460 (2015), no. 2, 131-132; English transl., Dokl. Math. 91 (2015), no. 1, 20-22. MR 3410042
  • 5. C. D. Aliprantis and K. C. Border, Infinite dimensional analysis. A hitchhiker's guide, Springer-Verlag, Berlin, 2006. MR 2378491
  • 6. C. D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, Math. Surveys Monogr., vol. 105, Amer. Math. Soc., Providence, RI, 2003. MR 2011364
  • 7. -, Positive operators, Pure Appl. Math., vol. 119, Acad. Press, Orlando, FL, 1985. MR 0809372
  • 8. S. Banach, Théorie des operations linéaires, Chelsea Publ. Co., New York, 1955. MR 0071726
  • 9. N. L. Carothers, A short course on Banach space theory, London Math. Soc. Student Text., vol. 64, Cambridge Univ. Press, Cambridge, 2005. MR 2124948
  • 10. C. Chou, On the size of the set of left invariant means on a semigroup, Proc. Amer. Math. Soc. 23 (1969), no. 1, 199-205. MR 0247444
  • 11. Y. Cui, H. Hudzik, and R. Pluchenik, Extreme points and strongly extreme points in Orlicz spaces equipped with the Orlicz norm, Z. Anal. Anwendungen 22 (2003), no. 4, 789-817. MR 2036931
  • 12. P. G. Dodds, B. de Pagter, A. A. Sedaev, E. M. Semenov, and F. A. Sukochev, Singular symmetric functionals and Banach limits with additional invariance properties, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 6, 111-136; English transl., Izv. Math. 67 (2003), no. 6, 1187-1212. MR 2032092
  • 13. W. F. Eberlein, Banach-Hausdorf limits, Proc. Amer. Math. Soc. 1 (1950), no. 5, 662-665. MR 0038009
  • 14. M. Jerison, The set of all generalized limits of bounded sequences, Canad. J. Math. 9 (1957), no. 1, 79-89. MR 0083697
  • 15. G. Keller, L. C. Moore, Jr., Invariant means on the group of integers, Analysis and Geometry, Bibliographisches Inst., Mannheim, 1992, pp. 1-18. MR 1274472
  • 16. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. MR 0027868
  • 17. W. A. J. Luxemburg, Nonstandard hulls, generalized limits and almost convergence, Analysis and Geometry, Bibliographisches Inst., Mannheim, 1992, pp. 19-45. MR 1274473
  • 18. R. Nillsen, Nets of extreme Banach limits, Proc. Amer. Math. Soc. 55 (1976), no. 2, 347-352. MR 0407530
  • 19. Ch. E. Rickart, General theory of Banach algebras, Univ. Ser. Higher Math., D. Van Nostrand Co., Princeton, N.J., 1974. MR 0115101
  • 20. E. M. Semenov and F. A. Sukochev, Invariant Banach limits and applications, J. Funct. Anal. 256 (2010), no. 6, 1517-1541. MR 2659770
  • 21. -, Extreme points of the set of Banach limits, Positivity 17 (2013), no. 1, 163-170. MR 3027652
  • 22. E. M. Semenov, F. A. Sukochev, and A. S. Usachev, Geometric properties of the set of Banach limits, Izv. Ross. Akad. Nauk Ser. Mat. 78 (2014), no. 3, 177-204; English transl., Izv. Math. 78 (2014), no. 3, 596-620. MR 3241823
  • 23. E. M. Semenov, F. A. Sukochev, A. S. Usachev, and D. V. Zanin, Banach limits and traces on $ L_1,\infty $, Actv. Math. 285 (2015), 568-628. MR 3406510
  • 24. L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), no. 3, 308-311. MR 0225145
  • 25. M. Talagrand, Geometrie des simplexes de moyennes invariantes, J. Funct. Anal. 34 (1979), no. 2, 304-337. MR 552708

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 46B15

Retrieve articles in all journals with MSC (2010): 46B15


Additional Information

E. Alekhno
Affiliation: Department of Mechanics and Mathematics, Belorussian State University, pr. Nezavisimosti 4, 220030 Minsk, Belorussia
Email: alekhno@bsu.by

E. Semenov
Affiliation: Department of Mathematics, Voronezh State University, Universitetskaya pl. 1, 394006 Voronezh, Russia
Email: nadezka_ssm@geophys.vsu.ru

F. Sukochev
Affiliation: School of Mathematics and Statistics, New South Wales University, Kensington 2052, New South Wales Australia
Email: f.sukochev@unsw.edu.au

A. Usachev
Affiliation: School of Mathematics and Statistics, New South Wales University, Kensington 2052, New South Wales Australia
Email: a.usachev@unsw.edu.au

DOI: https://doi.org/10.1090/spmj/1452
Keywords: Banach limit, space of bounded sequences $\ell_\infty$, dilation operator
Received by editor(s): December 25, 2015
Published electronically: March 29, 2017
Additional Notes: The second author was supported by RFBR (grant no. 14-01-00141a). The third and fourth authors were partially supported by the Australian Research Council (grant DP140100906).
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society