Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

New algorithms for solving tropical linear systems


Author: A. Davydow
Original publication: Algebra i Analiz, tom 28 (2016), nomer 6.
Journal: St. Petersburg Math. J. 28 (2017), 727-740
MSC (2010): Primary 30L10
DOI: https://doi.org/10.1090/spmj/1470
Published electronically: October 2, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of solving tropical linear systems, a natural problem of tropical mathematics, has already proved to be very interesting from the algorithmic point of view: it is known to be in $ NP\cap coNP$, but no polynomial time algorithm is known, although counterexamples for existing pseudopolynomial algorithms are (and must be) very complex.

In this work, the study of algorithms for solving tropical linear systems is continued. First, a new reformulation of Grigoriev's algorithm is presented, which brings it closer to the algorithm of Akian, Gaubert, and Guterman; this makes it possible to formulate a whole family of new algorithms, and, for some algorithms in this family, none of the known superpolynomial counterexamples work. Second, a family of algorithms for solving overdetermined tropical systems is presented.

An explicit algorithm is exhibited in the paper that can solve a tropical linear system determined by an $ (m\times n)$-matrix with maximal element $ M$ in time $ \Theta \big (\binom {m}{n}\mathrm {poly} \big (m, n, \log M\big )\big )$, and this time matches the complexity of the best of previously known algorithms for feasibility testing.


References [Enhancements On Off] (What's this?)

  • 1. M. Akian, S. Gaubert, and A. Guterman, The correspondence between tropical convexity and mean payoff games, Proc. 19 Internat. Symp. Math. Theory of Networks and Systems, Budapest, 2010, pp. 1295-1302.
  • 2. -, Tropical polyhedra are equivalent to mean payoff games, Internat. J. Algebra Comput. 22 (2012), no. 1, 1250001. MR 2900854
  • 3. M. Bezem, R. Nieuwenhuis, and E. Rodrígez-Carbonell, Hard problems in max-algebra, control theory, hypergraphs and other areas, Inform. Process. Lett. 110 (2010), no. 4, 133-138. MR 2584081
  • 4. P. Butkovič, Strong regularity of matrices -- a survey of results, Discrete Appl. Math. 48 (1994), no. 1, 45-68. MR 1254755
  • 5. R. A. Cuninghame-Green, Minimax algebra, Lecture Notes in Econom. and Math. Systems, vol. 166, Springer-Verlag, Berlin, 1979. MR 580321
  • 6. A. P. Davydov, Bounds for the complexity of Grigoriev's algorithm for solving tropical linear systems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 402 (2012), 69-82; English transl., J. Math. Sci. (N.Y.) 192 (2013), no. 3, 295-302. MR 2981979
  • 7. M. Develin, F. Santos, and B. Sturmfels, On the rank of a tropical matrix, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., vol. 52, Cambridge Univ. Press, Cambridge, 2005, pp. 213-242. MR 2178322
  • 8. A. Ehrenfeucht and J. Mycielski, Positional strategies for mean payoff games, Internat. J. Game Theory 8 (1979), no. 2, 109-113. MR 550954
  • 9. R. W. Floyd, Algorithm 97: shortest path., Commun. ACM  5 (1962), no. 6, 345; http:// doi.acm.org/10.1145/367766.368168.
  • 10. D. Grigoriev, Personal communication, 2013-09.
  • 11. -, Complexity of solving tropical linear systems, Comput. Complexity 22 (2013), no. 1, 71-88. MR 3034020
  • 12. D. Grigoriev and V. V. Podolskii, Complexity of tropical and min-plus linear prevarieties, CoRR, abs/1204.4578, 2012.
  • 13. Z. Izhakian, The tropical rank of a tropical matrix; arXiv:math/0604208v2, 2008. MR 2510993
  • 14. Z. Izhakian and L. Rowen, The tropical rank of a tropical matrix, Comm. Algebra 37 (2009), no. 11, 3912-3927. MR 2573227
  • 15. R. M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (1978), no. 23, 309-311. MR 523080
  • 16. A. V. Karzanov, V. A. Gurvich, and L. G. Khachiyan, Cyclic games and finding miminax mean cycles in digraphs, Zh. Vychisl. Mat. i Mat. Fiz. 28 (1988), no. 9, 1407-1417; English transl., USSR Comput. Math. and Math. Phys. 28 (1988), no. 5, 85-91. MR 967535
  • 17. A. V. Karzanov and V. N. Lebedev, Cyclical games with prohibitions, Math. Programm. 60 (1993), no. 3, 277-293. MR 1234877
  • 18. S. C. Kleene, Representation of events in nerve nets and finite automata, Automata Studies, Ann. Math. Stud., vol. 34, Princeton Univ. Press, Princeton, NJ, 1956. MR 0077478
  • 19. N. K. Krivulin, Idempotent algebra methods for problems in modelling and analysis of complex systems, St. Petersburg. Univ., St. Petersburg, 2009. (Russian)
  • 20. H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart. 2 (1955), 83-97. MR 0075510
  • 21. G. L. Litvinov, The Maslov dequantization and idempotent and tropical mathematics: a brief introdaction, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 326 (2005), 145-182; English transl., J. Math. Sci. (N.Y.) 140 (2007), no. 3, 426-444; arXiv:math/0507014. MR 2183219
  • 22. G. L. Litvinov, V. P. Maslov, A. Ya. Rodionov, and A. N. Sobolevski, Universal algorithms, mathematics of semirings and parallel computations, Lecture Notes Comput. Sci. Eng., vol. 75, Springer, Berlin, 2011. MR 2757572
  • 23. D. D. Lozovanu and V. A. Trubin, The problem of the minimax path in a network and an algorithm for its solution, Diskret. Mat. 6 (1994), no. 2, 138-144; English transl., Discrete Math. Appl. 4 (1994), no. 5, 447-453. MR 1290413
  • 24. D. D. Lozovanu, Strongly polynomial algorithms for the search for minimax paths in networks and for the solution of cyclic games, Kibernet. Sistem. Anal. (1993), no. 5, 145-151; English transl., Cybernet. Systems. Anal. 29 (1993), no. 5, 754-759. MR 1300561
  • 25. G. Mikhalkin, Enumerative tropical algebraic geometry in $ \mathrm R^2$, J. Amer. Math. Soc. 18 (2005), no. 2, pp. 313-377. MR 2137980
  • 26. V. Noel, D. Grigoriev, S. Vakulenko, and O. Radulescu, Hybrid models of the cell cycle molecular machinery, Electron. Proc. Theor. Comput. Sci. 92 (2012), 88-105.
  • 27. -, Tropical geometries and dynamics of biochemical networks. Application to hybrid cell cycle models, Electron. Notes Theor. Comput. Sci., vol. 284, Elsevier Sci. B. V., Amsterdam, 2012, pp. 75-91. MR 2956838
  • 28. J.-E. Pin, Positive varieties and infinite words, Lecture Notes in Comput. Sci., vol. 1380, Springer, Berlin, 1998, pp. 76-87; http://dx.doi.org/10.1007/BFb0054312. MR 1635489
  • 29. J. Richter-Gebert, B. Sturmfels, and T. Theobald, First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005, 289-317. MR 2149011
  • 30. I. Simon, Recognizable sets with multiplicities in the tropical semiring, Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci., vol. 324, Springer, Berlin, 1988, pp. 107-120. http://dx.doi.org/10.1007/BFb0017135. MR 1023416
  • 31. D. Speyer and B. Sturmfels, Tropical mathematics, Math. Mag. 82 (2009), no. 3, 163-173. MR 2522909
  • 32. U. Zwick and M. Paterson, The complexity of mean payoff games on graphs, Theoret. Comput. Sci. 158 (1996), no. 1-2, 342-359. MR 1388974 (97e:90139)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 30L10

Retrieve articles in all journals with MSC (2010): 30L10


Additional Information

A. Davydow
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia
Email: adavydow@gmail.com

DOI: https://doi.org/10.1090/spmj/1470
Keywords: Tropical linear system, feasibility, Grigoriev's algorithm, Akian--Gaubert--Guterman algorithm
Received by editor(s): June 3, 2016
Published electronically: October 2, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society