Tauberian theorem for fields with an spectrum. II
Author:
A. Ya. Olenko
Translated by:
V. V. Semenov
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 74 (2006).
Journal:
Theor. Probability and Math. Statist. 74 (2007), 93111
MSC (2000):
Primary 60G60, 62E20, 40E05; Secondary 60F05, 26A12, 44A15
Published electronically:
June 29, 2007
MathSciNet review:
2336781
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider homogeneous isotropic random fields whose spectra have some local singular properties. We prove Abelian and Tauberian theorems linking the local behavior of the spectral function and that of weighted integral functionals of random fields. Representations of weight functions in the form of the Hankel transform and series of functions are obtained. The asymptotic behavior is described in terms of functions of the class . Some examples are given.
 1.
Arthur
Erdélyi, Wilhelm
Magnus, Fritz
Oberhettinger, and Francesco
G. Tricomi, Higher transcendental functions. Vols. I, II,
McGrawHill Book Company, Inc., New YorkTorontoLondon, 1953. Based, in
part, on notes left by Harry Bateman. MR 0058756
(15,419i)
 2.
N.
H. Bingham, C.
M. Goldie, and J.
L. Teugels, Regular variation, Encyclopedia of Mathematics and
its Applications, vol. 27, Cambridge University Press, Cambridge,
1989. MR
1015093 (90i:26003)
 3.
S.
Bochner and K.
Chandrasekharan, Fourier Transforms, Annals of Mathematics
Studies, no. 19, Princeton University Press, Princeton, N. J., 1949. MR 0031582
(11,173d)
 4.
G.
N. Watson, A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, England, 1944. MR 0010746
(6,64a)
 5.
G.
Laue, Tauberian and abelian theorems for characteristic
functions, Teor. Veroyatnost. i Mat. Statist. 37
(1987), 78–92, 136 (Russian). MR 913912
(89a:60044)
 6.
N.
N. Leonenko and A.
V. Ivanov, Statisticheskii analiz sluchainykh polei,
“Vishcha Shkola”, Kiev, 1986 (Russian). With a preface by A. V.
Skorokhod. MR
917486 (89e:62125)
A.
V. Ivanov and N.
N. Leonenko, Statistical analysis of random fields,
Mathematics and its Applications (Soviet Series), vol. 28, Kluwer
Academic Publishers Group, Dordrecht, 1989. With a preface by A. V.
Skorokhod; Translated from the Russian by A. I. Kochubinskiĭ. MR 1009786
(90g:62235)
 7.
Nikolai
Leonenko, Limit theorems for random fields with singular
spectrum, Mathematics and its Applications, vol. 465, Kluwer
Academic Publishers, Dordrecht, 1999. MR 1687092
(2000k:60102)
 8.
Francis
J. Narcowich and Joseph
D. Ward, Norm estimates for the inverses of a general class of
scattereddata radialfunction interpolation matrices, J. Approx.
Theory 69 (1992), no. 1, 84–109. MR 1154224
(93c:41005), http://dx.doi.org/10.1016/00219045(92)90050X
 9.
A.
Ya. Olenko, A Tauberian theorem for fields with the OR spectrum.
I, Teor. Ĭmovīr. Mat. Stat. 73 (2005),
120–133 (Ukrainian, with Ukrainian summary); English transl., Theory
Probab. Math. Statist. 73 (2006), 135–149. MR 2213848
(2007m:60142)
 10.
M.
Ĭ. Yadrenko, Spectral theory of random fields,
Translation Series in Mathematics and Engineering, Optimization Software
Inc. Publications Division, New York, 1983. Translated from the Russian. MR 697386
(84f:60003)
 1.
 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. I, McGrawHill Book Company, Inc., New YorkTorontoLondon, 1953. MR 0058756 (15:419i)
 2.
 N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, 1989. MR 1015093 (90i:26003)
 3.
 S. Bochner and K. Chandrasekharan, Fourier Transforms, Princeton University Press, 1949. MR 0031582 (11:173d)
 4.
 G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England, 1944. MR 0010746 (6:64a)
 5.
 G. Laue, Tauberian and Abelian theorems for characteristic functions, Teor. Veroyatnost. Matem. Statist. 37 (1987), 7892; English transl. in Theor. Probability Math. Statist. 37 (1988), 89104. MR 913912 (89a:60044)
 6.
 A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields, ``Vyshcha shkola'', Kiev, 1986; English transl., Kluwer Academic Publishers Group, Dordrecht, 1989. MR 917486 (89e:62125); MR 1009786 (90g:62235)
 7.
 N. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum, Kluwer Academic Publishers, DordrechtBostonLondon, 1999. MR 1687092 (2000k:60102)
 8.
 F. J. Narcowich and J. D. Ward, Norm estimates for the inverses of a general class of scattereddata radialfunction interpolation matrices, J. Approx. Theory 69 (1992), 84109. MR 1154224 (93c:41005)
 9.
 A. Ya. Olenko, Tauberian theorems for random fields with an spectrum. I, Teor. Imovirnost. Matem. Statist. 73 (2005), 120133; English transl. in Theor. Probability Math. Statist. 73 (2006), 135149. MR 2213848
 10.
 M. I. Yadrenko, Spectral Theory of Random Fields, Optimization Software Inc., New York, 1983. MR 697386 (84f:60003)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60G60,
62E20,
40E05,
60F05,
26A12,
44A15
Retrieve articles in all journals
with MSC (2000):
60G60,
62E20,
40E05,
60F05,
26A12,
44A15
Additional Information
A. Ya. Olenko
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01033, Ukraine
Email:
olenk@univ.kiev.ua
DOI:
http://dx.doi.org/10.1090/S0094900007007004
PII:
S 00949000(07)007004
Keywords:
Tauberian theorem,
Abelian theorem,
slowly varying functions,
$OR$ class of functions,
random fields,
homogeneous fields,
isotropic fields,
functionals of a random field,
spectral function,
correlation function,
asymptotics,
strong dependence,
Hankel transform,
Bessel functions
Received by editor(s):
February 1, 2005
Published electronically:
June 29, 2007
Article copyright:
© Copyright 2007 American Mathematical Society
