Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Limit theorem for maximal segmental score for random sequences of random length


Authors: B. L. S. Prakasa Rao and M. Sreehari
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 76 (2007).
Journal: Theor. Probability and Math. Statist. 76 (2008), 155-158
MSC (2000): Primary 60G50
DOI: https://doi.org/10.1090/S0094-9000-08-00739-4
Published electronically: July 16, 2008
MathSciNet review: 2368747
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain the limiting distribution of the maximal segmental score for the partial sums for a random number of independent and identically distributed random variables.


References [Enhancements On Off] (What's this?)

  • 1. R. Arratia, L. Gordon, and M. S. Waterman, The Erdös-Rényi law in distribution, for coin tossing and sequence matching, Ann. Statist. 18 (1990), 539-570. MR 1056326 (92a:60054)
  • 2. R. Arratia and M. S. Waterman, A phase transition for the score in matching random sequences allowing deletions, Ann. Appl. Prob. 4 (1994), 200-225. MR 1258181 (95b:60024)
  • 3. O. Barndorff-Nielsen, On the limit distribution of the maximum of a random number of independent random variables, Acta Math. Acad. Sci. Hungar. 15 (1964), 399-403. MR 0170360 (30:598)
  • 4. S. Csörgö, On limit distributions of sequences of random variables with random indices, Acta Math. Acad. Sci. Hungar. 25 (1974), 227-232. MR 0365660 (51:1912)
  • 5. D. L. Iglehart, Extreme values in the GI/G/1 queue, Ann. Math. Statist. 43 (1972), 627-635. MR 0305498 (46:4628)
  • 6. S. Karlin and A. Dembo, Limit distributions of maximal segmental score among Markov-dependent partial sums, Adv. Appl. Probab. 24 (1992), 113-140. MR 1146522 (93b:60042)
  • 7. S. Mercier and J. J. Daudin, Exact distribution for the local score of one i.i.d. random sequence, J. Comput. Biol. 8 (2001), 373-380.
  • 8. S. Mercier, D. Cellier, and D. Charlot, An improved approximation for assessing the statistical significance of molecular sequence features, J. Appl. Probab. 40 (2003), 427-441. MR 1978101 (2004d:60115)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60G50

Retrieve articles in all journals with MSC (2000): 60G50


Additional Information

B. L. S. Prakasa Rao
Affiliation: University of Hyderabad, Hyderabad 500046, India
Email: blsprsm@uohyd.ernet.in

M. Sreehari
Affiliation: M. S. University, Vadodara, India
Email: msreehari03@yahoo.co.uk

DOI: https://doi.org/10.1090/S0094-9000-08-00739-4
Keywords: Maximum segmental score, limit theorem, random sequences, random length
Received by editor(s): July 17, 2006
Published electronically: July 16, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society