Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Strong stability in a Jackson queueing network


Authors: O. Lekadir and D. Aissani
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 77 (2007).
Journal: Theor. Probability and Math. Statist. 77 (2008), 107-119
MSC (2000): Primary 60K20, 60K25
DOI: https://doi.org/10.1090/S0094-9000-09-00750-9
Published electronically: January 16, 2009
MathSciNet review: 2432775
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Non-product networks are extremely difficult to analyze, so they are often solved by approximate methods. However, it is indispensable to delimit the domain wherever these approximations are justified. Our goal in this paper is to prove the applicability of the strong stability method to the queueing networks in order to be able to approximate non-product form networks by product ones. Therefore, we established the strong stability of a Jackson network $ M/M/1\to M/M/1$ (ideal model) under perturbations of the service time distribution in the first station of a non-product network $ M/GI/1\to GI/M/1$ (real model).


References [Enhancements On Off] (What's this?)

  • 1. D. Aïssani, Application of the operator methods to obtain inequalities of stability in an $ M_2/G_2/1$ system with a relative priority, Annales Maghrébines de l' Ingénieur, Numéro Hors série 2 (1991), 790-795.
  • 2. D. Aïssani and N. V. Kartashov, Strong stability of the imbedded Markov chains in an $ M/G/1$ system, Theor. Probability and Math. Statist. 29 (1984), 1-5. MR 727097 (85d:60167)
  • 3. D. Aïssani and N. V. Kartashov, Ergodicity and stability of Markov chains with respect to operator topology in the space of transition kernels, Dokl. Akad. Nauk Ukr. SSR, ser. A 11 (1983), 1-5. MR 728475 (85c:60110)
  • 4. F. Baskett, K. M. Chandy, R. Muntz, and G. F. Palacios, Open, closed and mixed networks of queueing with different classes of customers, J. ACM 22 (1975), 248-260. MR 0365749 (51:2001)
  • 5. B. Baynat, Réseaux de files d'attente: Des Chaînes de Markov aux Réseaux à Forme Produit, Eyrolles Edition, 2000.
  • 6. B. Baynat and Y. Dallery, A Unified View of Product-form Approximation Techniques for General Closed Queueing Networks, Technical Report 90.48, Institut Blaise Pascal, Paris, Octobre 1990.
  • 7. M. Benaouicha and D. Aïssani, Estimate of the strong stability in a $ G/M/1$ queueing system, Theory of Probab. and Math. Statist. 71 (2005), 22-32. MR 2144318 (2006a:60171)
  • 8. L. Berdjoudj and D. Aïssani, Strong stability in retrial queues, Theor. Probability and Math. Statist. 68 (2004), 11-17. MR 2000390 (2004f:60188)
  • 9. L. Bouallouche and D. Aïssani, Performance analysis approximation in a queueing system of type $ M/G/1$, Mathematical Methods of Operations Research 63 (2006), no. 2. MR 2264753 (2007i:90017)
  • 10. Robert B. Cooper, Fundamentals of Queueing Theory, 4th ed., Ceep Press Books, 1990.
  • 11. J. G. Dai, On positive Harris recurrence of multiclass queueing networks: a unified approch via fluid limit models, Annals of Applied Probability 5 (1993), no. 1, 49-77. MR 1325041 (96c:60113)
  • 12. G. Fayolle, V. A. Malyshev, M. V. Menshikov, and A. F. Sidorenko, Lyaponov Functions for Jackson Networks, Rapport de Recherche 1380, INRIA, Domaine de Voluceau, LeChenay, Janvier 1991.
  • 13. E. Gelenbe, Product form queueing networks with positive and negative customers, J. Appl. Probab. 28 (1991), 656-663. MR 1123837 (92k:60210)
  • 14. W. J. Gordon and F. Newell, Closed queueing systems with exponential servers, Operations Research 15 (1967).
  • 15. D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed., Wiley-InterScience, 1998. MR 1600527 (98m:60144)
  • 16. C. F. Ipsen and C. D. Meyer, Uniform stability of Markov chains, Siam. J. Matrix Anal. Appl. 15 (1994), no. 4, 1061-1074. MR 1293904 (95h:65110)
  • 17. J. R. Jackson, Networks of waiting lines, Operations Research 5 (1957), 518-521. MR 0093061 (19:1203c)
  • 18. N. V. Kartashov, Strong stability of Markov chains, Vsesoyuzn. Seminar on Stability Problems for Stochastic Models, VNIISI, Moscow, 1981, pp. 54-59; see also Journal of Soviet Mathematics 34 (1986), 1493-1498. MR 668559 (84b:60089)
  • 19. N. V. Kartashov, Strong Stable Markov Chains, VSP/TViMS, Utrecht/Kiev, 1996. MR 1451375 (99e:60150)
  • 20. H. Kobayashi, Application of the diffusion approximation to queueing network, J. Assoc. Comput. Mach. 21 (1974), 316-328. MR 0350899 (50:3391)
  • 21. P. R. Kumar, A tutorial on some new methods for performance evaluation of queueing networks, IEEE Journal on Selected Areas in Communications 13 (1995), no. 6, 970-980.
  • 22. J. Labetoulle and G. Pujolle, Isolation method in a network of queues, IEEE Transaction on Software Engineering 6 (1980), 373-381.
  • 23. M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins University Press, 1981. MR 618123 (82j:60177)
  • 24. B. Rabta and D. Aïssani, Stability analysis in an inventory model, Theory of Stochastic Processes 10(26) (2004), no. 3-4, 129-135. MR 2329786 (2008g:60219)
  • 25. B. Rabta and D. Aïssani, Strong stability in an $ (R,s,S)$ inventory model, International Journal of Production Economics 97 (2005), 159-171.
  • 26. S. T. Rachev, The problem of stability in queueing theory, Queueing Systems 4 (1989), 287-318. MR 1018523 (91c:60132)
  • 27. P. J. Schweitzer, A Survey of Mean Value Analysis, its Generalizations, and Applications for Networks of Queues, Technical report, University of Rochester, Rochester, NY, 1990.
  • 28. K. Sigman, Notes on the stability of closed queueing networks, J. Appl. Probab. 27 (1990), 735. MR 1067041 (91j:60151)
  • 29. K. Sigman, The stability of open queueing networks, Stochastic Processes and their Applications 35 (1990), 11-25. MR 1062580 (91m:60178)
  • 30. N. M. van Dijk, Queueing Networks and Product Forms--A Systems Approach, Wiley, 1993. MR 1266845 (95b:90001)
  • 31. I. Y. Wang and T. G. Robertazzi, Recursive computation of steady-state probabilities of nonproduct form queueing networks associated with computer network models, IEEE Transactions on Communications 38 (January 1990), no. 1.
  • 32. W. Whitt, The queueing network analyzer, The Bell System Technical Journal 62 (November 1983), no. 9.

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60K20, 60K25

Retrieve articles in all journals with MSC (2000): 60K20, 60K25


Additional Information

O. Lekadir
Affiliation: LAMOS Laboratory, University of Bejaia 06000, Algeria
Email: ouiza_lekadir@yahoo.fr

D. Aissani
Affiliation: LAMOS Laboratory, University of Bejaia 06000, Algeria
Email: lamos_bejaia@hotmail.com

DOI: https://doi.org/10.1090/S0094-9000-09-00750-9
Keywords: Queueing networks, strong stability, product form, Jackson networks, Markov chain, perturbation
Received by editor(s): February 10, 2006
Published electronically: January 16, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society