Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 

 

An estimate for the mean error probability of a Bayesian criterion for testing hypotheses in the problem of cryptanalysis of a combined gamma generator with nonuniform noise


Authors: A. M. Oleksiĭchuk and R. V. Proskurovs'kiĭ
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 78 (2008).
Journal: Theor. Probability and Math. Statist. 78 (2009), 167-174
MSC (2000): Primary 94A60; Secondary 94B70
Published electronically: August 4, 2009
MathSciNet review: 2446857
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A probability model for a combined gamma generator with nonuniform noise in a resynchronization mode is studied. We consider the problem of testing hypotheses about the distribution of a random binary vector $ X^{(0)}$ (the state of a combined gamma generator) by using a sampled binary sequence whose signs depend on $ X^{(0)}$ in a specified way and on certain other random parameters. We obtain a nonasymptotic upper bound for the mean error probability of a Bayesian criterion for testing the hypotheses mentioned above.


References [Enhancements On Off] (What's this?)

  • 1. Patrik Ekdahl and Thomas Johansson, Another attack on A5/1, IEEE Trans. Inform. Theory 49 (2003), no. 1, 284–289. MR 1966707, 10.1109/TIT.2002.806129
  • 2. A. N. Alekseĭchuk and R. V. Proskurovskiĭ, A lower bound for the probability of distinguishing the inner states of a clock-controlled combiner, Pravove, Normatyvne ta Metrologychne Zabezpechennya Systemy Zahystu Informacii v Ukraine 2(13) (2006), 159-169. (Russian)
  • 3. Frederik Armknecht, Joseph Lano, and Bart Preneel, Extending the resynchronization attack, Selected areas in cryptography, Lecture Notes in Comput. Sci., vol. 3357, Springer, Berlin, 2005, pp. 19–38. MR 2180666, 10.1007/978-3-540-30564-4_2
  • 4. A. A. Borovkov, Matematicheskaya statistika, “Nauka”, Moscow, 1984 (Russian). Otsenka parametrov. Proverka gipotez. [Estimation of parameters. Testing of hypotheses]. MR 782295
    A. A. Borovkov, Mathematical statistics, Gordon and Breach Science Publishers, Amsterdam, 1998. Translated from the Russian by A. Moullagaliev and revised by the author. MR 1712750
  • 5. O. A. Logachëv, A. A. Sal′nikov, and V. V. Yashchenko, Bulevy funktsii v teorii kodirovaniya i kriptologii, \cyr Informatsionnaya Bezopastnost′: Kriptografiya. [Information Security: Cryptography], Moskovskiĭ Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, Moscow, 2004 (Russian). With a foreword by V. A. Sadovnichiĭ. MR 2078186
  • 6. Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30. MR 0144363
  • 7. Imre Csiszár and János Körner, Information theory, Probability and Mathematical Statistics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. Coding theorems for discrete memoryless systems. MR 666545

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 94A60, 94B70

Retrieve articles in all journals with MSC (2000): 94A60, 94B70


Additional Information

A. M. Oleksiĭchuk
Affiliation: Institute of Special Communication and Protection of Information, National Technical University of Ukraine KPI, Moskovs’ka Street 45/1, Kyiv 01011, Ukraine
Email: alex-crypto@mail.ru

R. V. Proskurovs'kiĭ
Affiliation: Institute of Special Communication and Protection of Information, National Technical University of Ukraine KPI, Moskovs’ka Street 45/1, Kyiv 01011, Ukraine
Email: roman-crypto@mail.ru

DOI: https://doi.org/10.1090/S0094-9000-09-00770-4
Keywords: Statistical methods of cryptanalysis, test of hypotheses
Received by editor(s): December 4, 2006
Published electronically: August 4, 2009
Article copyright: © Copyright 2009 American Mathematical Society