Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Asymptotic stability of the maximum of normal stochastic processes


Author: I. K. Matsak
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 79 (2008).
Journal: Theor. Probability and Math. Statist. 79 (2009), 101-106
MSC (2000): Primary 60B12
DOI: https://doi.org/10.1090/S0094-9000-09-00784-4
Published electronically: December 30, 2009
MathSciNet review: 2494539
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under quite general conditions, we prove that the maximum of a sequence of normal stochastic processes in the space $ C_{[0,1]}$ is asymptotically stable almost surely.


References [Enhancements On Off] (What's this?)

  • 1. B. V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. of Math. (2) 44 (1943), no. 3, 423-453. MR 0008655 (5:41b)
  • 2. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR 489334 (80b:60040)
  • 3. O. Barndorff-Nielsen, On the limit behaviour of extreme order statistics, Ann. Math. Statist. 34 (1963), no. 3, 992-1002. MR 0150889 (27:875)
  • 4. I. K. Matsak, A limit theorem for the maximum of Gaussian independent random variables in the space $ C$, Ukrain. Mat. Zh. 47 (1995), no. 7, 1006-1008; English transl. in Ukrainian Math. J. 47 (1995), no. 7, 1152-1155. MR 1367958
  • 5. I. K. Matsak and A. M. Plichko, On the maxima of independent random elements in a Banach functional lattice, Teor. Imovir. Mat. Stat. 61 (1999), 105-116; English transl. in Theory Probab. Math. Statist. 61 (2000), 109-120. MR 1866964 (2002k:60020)
  • 6. I. K. Matsak and A. M. Plichko, Limit theorems for random elements in ideals of ordered bounded elements of functional Banach lattices, Ukrain. Mat. Zh. 53 (2001), no. 1, 41-49; English transl. in Ukrainian Math. J. 53 (2001), no. 1, 48-58. MR 1834638 (2002d:60002)
  • 7. I. K. Matsak, On the relative stability of extremal random functions, Mat. Zametki 71 (2002), no. 5, 787-790; English transl. in Math. Notes 71 (2002), no. 5, 717-720. MR 1936843 (2003k:60114)
  • 8. R. M. Dudley, Sample functions of the Gaussian process, Ann. Probab. 1 (1973), no. 1, 66-103. MR 0346884 (49:11605)
  • 9. I. K. Matsak, On limit points of a sequence of extreme values of normal random elements of a Banach space with an unconditional basis, Teor. Imovir. Mat. Stat. 55 (1996), 136-143; English transl. in Theory Probab. Math. Statist. 55 (1997), 143-151. MR 1641569 (99g:60011)
  • 10. X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg, 1975. MR 0413238 (54:1355)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60B12

Retrieve articles in all journals with MSC (2000): 60B12


Additional Information

I. K. Matsak
Affiliation: Department of Operation Research, Faculty for Cybernetics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: mik@unicyb.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-09-00784-4
Keywords: Asymptotic stability, extremal values, normal stochastic processes, the space $C_{[0,1]}$
Received by editor(s): January 30, 2007
Published electronically: December 30, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society