Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)



Arbitrage in a discrete time model of a financial market with a taxation proportional to the portfolio size

Author: G. M. Shevchenko
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 81 (2010).
Journal: Theor. Probability and Math. Statist. 81 (2010), 177-186
MSC (2010): Primary 91B30
Published electronically: January 20, 2011
MathSciNet review: 2667318
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of $ V^\varepsilon$-arbitrage (in other words, an arbitrage under the taxation proportional to the portfolio size) for a multiperiod discrete time model of a financial market. For a $ V^\varepsilon$-arbitrage, we prove a result analogous to the classical fundamental asset pricing theorem. Differences between a $ V^\varepsilon$-arbitrage and some other notions of arbitrage are analyzed.

References [Enhancements On Off] (What's this?)

  • 1. R. C. Dalang, A. Morton, and W. Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stochastics Stochastics Rep. 29 (1990), 185-201. MR 1041035 (91g:90056)
  • 2. F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (1994), 463-520. MR 1304434 (95m:90022b)
  • 3. H. Föllmer and W. Schachermayer, Asymptotic arbitrage and large deviations, Finance Stoch. 1 (1997), no. 3, 181-227. MR 2403770 (2009c:91046)
  • 4. Yu. Kabanov and D. Kramkov, Asymptotic arbitrage in large financial markets, Finance Stoch. 2 (1998), no. 2, 143-172. MR 1806101 (2001m:91090)
  • 5. Yu. Kabanov and M. Safarian, Markets with Transaction Costs, Springer Finance, Springer, Berlin, 2009. MR 2589621
  • 6. Yu. M. Kabanov and Ch. Stricker, A teachers' note on no-arbitrage criteria, Séminaire de Probabilités XXXV, Lect. Notes Math., vol. 1755, Springer, Berlin, 2001, pp. 149-152. MR 1837282 (2003c:60073)
  • 7. J. Liu and F. Longstaff, Losing money on arbitrages: optimal dynamic portfolio choice in markets with arbitrage opportunities, Rev. Financial Studies 71 (2004), no. 3, 611-641.
  • 8. C. Dellacherie, Capacités et processus stochastiques, Springer-Verlag, Berlin-New York, 1972. MR 0448504 (56:6810)
  • 9. Yu. S. Mishura, The main theorem of financial mathematics for a bounded arbitrage, Applied Statistics. Actuarial and Finance Mathematics 2003, no. 1-2, 49-54. (Ukrainian)
  • 10. Yu. S. Mishura, G. M. Shevchenko, and P. S. Shelyazhenko, Limited arbitrage in a multiperiod model of a financial market with discrete time, Teor. Imovir. Mat. Stat. 77 (2007), 122-131; English transl. in Theory Probab. Math. Statist. 77 (2008), 135-146. MR 2432777 (2009c:91074)
  • 11. H. Föllmer and A. Schied, Stochastic Finance. An Introduction in Discrete Time, Walter de Gruyter & Co., Berlin, 2002. MR 1925197 (2004h:91051)
  • 12. A. N. Shiryaev, Essentials of Stochastic Finance. Facts, Models, Theory, Fazis, Moscow, 1998; English transl., World Scientific, River Edge, NJ, 1999. MR 1695318 (2000e:91085)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 91B30

Retrieve articles in all journals with MSC (2010): 91B30

Additional Information

G. M. Shevchenko
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 2, Kiev 03127, Ukraine

Keywords: Arbitrage, transaction costs, portfolio size constraints, martingale measure, measurable choice theorem
Received by editor(s): September 28, 2009
Published electronically: January 20, 2011
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society