Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

Request Permissions   Purchase Content 
 

 

Semigroups of operators that describe a Feller process on the line, which is the result of pasting together two diffusion processes


Authors: P. P. Kononchuk and B. I. Kopytko
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 84 (2011).
Journal: Theor. Probability and Math. Statist. 84 (2012), 87-97
MSC (2010): Primary 60J60
DOI: https://doi.org/10.1090/S0094-9000-2012-00868-5
Published electronically: July 31, 2012
MathSciNet review: 2857419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the method of the classical potential theory to construct the semigroup of operators that describe a Feller process on the line by pasting together two diffusion processes that satisfy a nonlocal Feller-Wentzell type condition for the pasting.


References [Enhancements On Off] (What's this?)

  • 1. H. Langer and W. Schenk, Knotting of one-dimensional Feller processes, Math. Nachr. 113 (1983), 151–161. MR 725484, https://doi.org/10.1002/mana.19831130115
  • 2. William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468–519. MR 0047886, https://doi.org/10.2307/1969644
  • 3. A. D. Ventcel′, Semigroups of operators that correspond to a generalized differential operator of second order, Dokl. Akad. Nauk SSSR (N.S.) 111 (1956), 269–272 (Russian). MR 0092085
  • 4. B. I. Kopytko, Pasting together of two diffusion processes on a straight line, Probabilistic methods of infinite-dimensional analysis (Russian), Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1980, pp. 84–101, 173 (Russian). MR 623093
  • 5. M. I. Portenko, \cyr Protsesi difuzīï v seredovishchakh z membranami, \cyr Trudi Īnstitutu Matematiki Natsīonal′noï Akademīï Nauk Ukraïni [Proceedings of the Institute of Mathematics of the National Academy of Sciences of the Ukraine], vol. 10, Natsīonal′na Akademīya Nauk Ukraïni, Īnstitut Matematiki, Kiev, 1995 (Ukrainian, with Ukrainian summary). MR 1356720
  • 6. Pavlo Kononchuk, Pasting of two diffusion processes on a line with nonlocal boundary conditions, Theory Stoch. Process. 14 (2008), no. 2, 52–59. MR 2479733
  • 7. G. L. Kulīnīč, The limit distribution behavior of the solution of a stochastic diffusion equation, Teor. Verojatnost. i Primenen 12 (1967), 548–551 (Russian, with English summary). MR 0215365
  • 8. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, \cyr Lineĭnye i kvazilineĭnye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
    O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). MR 0241822
  • 9. L. I. Kamynin, The existence of a solution of boundary-value problems for a parabolic equation with discontinuous coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 721–744 (Russian). MR 0165245

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60J60

Retrieve articles in all journals with MSC (2010): 60J60


Additional Information

P. P. Kononchuk
Affiliation: Department of Higher Mathematics, Faculty for Mechanics and Mathematics, L’viv National Ivan Franko University, Universytets’ka Street 1, L’viv 79000, Ukraine
Email: p.kononchuk@gmail.com

B. I. Kopytko
Affiliation: Department of Higher Mathematics, Faculty for Mechanics and Mathematics, L’viv National Ivan Franko University, Universytets’ka Street 1, L’viv 79000, Ukraine
Email: bohdan.kopytko@gmail.com

DOI: https://doi.org/10.1090/S0094-9000-2012-00868-5
Keywords: Diffusion processes, discontinuities of trajectories, analytic methods, method of potential
Received by editor(s): September 27, 2010
Published electronically: July 31, 2012
Article copyright: © Copyright 2012 American Mathematical Society