Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Maximal coupling procedure and stability of discrete Markov chains. II


Authors: M. V. Kartashov and V. V. Golomozyĭ
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 87 (2012).
Journal: Theor. Probability and Math. Statist. 87 (2013), 65-78
MSC (2010): Primary 60J45; Secondary 60A05, 60K05
DOI: https://doi.org/10.1090/S0094-9000-2014-00905-9
Published electronically: March 21, 2014
MathSciNet review: 3241447
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two discrete Markov chains whose one-step transition probabilities are close to each other in the uniform total variation norm or in the $ V$-norm are considered. The problem of stability of the transition probabilities over an arbitrary number of steps is investigated. The main assumption is that either the uniform mixing or $ V$-mixing condition holds. In particular, we prove that the uniform distance between the distributions of the chains after an arbitrary number of steps does not exceed $ \varepsilon /(1-\rho )$, where $ \varepsilon $ is the uniform distance between the transition matrices and where $ \rho $ is the uniform mixing coefficient. A number of general examples are considered. The proofs are based on the maximal coupling procedure that maximizes the one-step coupling probabilities.


References [Enhancements On Off] (What's this?)

  • 1. W. Doeblin, Expose de la theorie des chaines simples constantes de Markov a un nomber fini d'estats, Mathematique de l'Union Interbalkanique 2 (1938), 77-105.
  • 2. W. Feller, An Intoduction to Probability Theory and its Applications, vol. 1, John Wiley & Sons, New York, 1966. MR 0210154 (35:1048)
  • 3. N. V. Kartashov, Strong Stable Markov Chains, VSP/TViMS, Utrecht/Kiev, The Netherlands/Ukraine, 1996. MR 1451375 (99e:60150)
  • 4. N. V. Kartashov, Exponential asymptotics of the matrix of a Markov renewal, Asymptotic Problems for Stochastic Processes, Preprint # 77-24, Institute of Mathematics, Academy of Science of Ukraine, Kiev, 1977, pp. 2-43. (Russian)
  • 5. E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahrscheinlichkeitstheorie verw. Geb. 43 (1978), 309-318. MR 0501353 (58:18732)
  • 6. E. Nummelin and R. L. Tweedie, Geometric ergodicity and R-positivity for general Markov chains, Ann. Probab. 6 (1978), 404-420. MR 0474504 (57:14143)
  • 7. T. Lindvall, On coupling of discrete renewal sequences, Z. Wahrscheinlichkeitstheorie verw. Geb. 48 (1979), 57-70. MR 533006 (80g:60091)
  • 8. I. N. Kovalenko and N. Yu. Kuznetsov, The construction of the embedded renewal process for essentially multidimensional queueing processes and its application for deriving the limit theorems, Preprint # 80-12, Institute of Cybernetics, Academy of Science of Ukraine, Kiev, 1980. (Russian) MR 612478 (82i:60142)
  • 9. P. Ney, A refinement of the coupling method in renewal theory, Stochastic Processes Appl. 11 (1981), 11-26. MR 608004 (82d:60169)
  • 10. E. Numemelin and P. Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applicatoins to renewal theory, Stoch. Proc. Appls. 12 (1982), 187-202. MR 651903 (83f:60089)
  • 11. E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, 1984. MR 776608 (87a:60074)
  • 12. V. M. Zolotarev, Modern Theory of Summation of Independent Random Variables, ``Nauka'', Moscow, 1986; English transl., VSP, Utrecht, the Netherlands-Tokyo, Japan, 1997.
  • 13. S. T. Rachev, The Monge-Kantorovich mass transference problem and its stochastic applications, Teor. Veroyatnost. Primenen, 29 (1984), no. 4, 625-653; English transl. in Theory Probab. Appl. 29 (1984), no. 4, 647-676. MR 773434 (86m:60026)
  • 14. T. Lindvall, Lectures on the Coupling Method, John Wiley & Sons, New York, 1992. MR 1180522 (94c:60002)
  • 15. S. P. Mayn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag London, Ltd., London, 1993. MR 1287609 (95j:60103)
  • 16. P. Tuominen and R. Tweedie, Subgeometric rates of convergence of f-ergodic Markov chains, Adv. Appl. Probab. 26 (1994), 775-798. MR 1285459 (95m:60097)
  • 17. R. L. Tweedie and J. N. Corcoran, Perfect sampling of ergodic Harris chains, Ann. Appl. Probab. 11 (2001), no. 2, 438-451. MR 1843053 (2002g:60111)
  • 18. H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000. MR 1741181 (2001b:60003)
  • 19. S. F. Jarner and G. O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2001), 224-247. MR 1890063 (2003c:60117)
  • 20. R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 14 (2004), 1643-1664. MR 2099647 (2005i:60146)
  • 21. R. Douc, E. Moulines, and J. S. Rothenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643-1665. MR 2099647 (2005i:60146)
  • 22. R. Douc, E. Moulines, and P. Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 4, 1353-1377. MR 2071426 (2005e:60156)
  • 23. R. Douc, E. Moulines, and P. Soulier, Computable convergence rates for subgeometrically ergodic Markov Chains, Bernoulli 13 (2007), no. 3, 831-848. MR 2348753 (2008j:60172)
  • 24. R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stoch. Process. Appl. 119 (2009), no. 3, 897-923. MR 2499863 (2010j:60184)
  • 25. V. V. Golomozyĭ, Stability of non-homogeneous Markov chains, Visnyk Kyiv Univ., ser. fiz. mat. nauk 4 (2009), 10-15. (Ukrainian)
  • 26. V. V. Golomozyĭ, A subgeometric estimate for the stability of time-homogeneous Markov chains, Teor. Imovir. Mat. Stat. 81 (2010), 31-45; English transl. in Theory Probab. Math. Statist. 81 (2010), 35-50. MR 2667308 (2011c:60232)
  • 27. M. V. Kartashov, Boundedness, limits, and stability of solutions of an inhomogeneous perturbation of a renewal equation on a half-line, Teor. Imovir. Mat. Stat. 81 (2009), 65-75; English transl. in Theory Probab. Math. Statist. 81 (2010), 71-83. MR 2667311 (2011f:60154)
  • 28. M. V. Kartashov and V. V. Golomozyĭ, The mean coupling time of independent discrete renewal processes, Teor. Imovir. Mat. Stat. 84 (2011), 77-83; English transl. in Theory Probab. Math. Statist. 84 (2012), 79-86. MR 2857418 (2012f:60306)
  • 29. M. V. Kartashov and V. V. Golomozyĭ, Maximal coupling and stability of discrete Markov chains. I, Teor. Imovir. Mat. Stat. 86 (2011), 81-91. MR 2986452

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60J45, 60A05, 60K05

Retrieve articles in all journals with MSC (2010): 60J45, 60A05, 60K05


Additional Information

M. V. Kartashov
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 4E, Kiev 03127, Ukraine
Email: nkartashov@skif.com.ua

V. V. Golomozyĭ
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 4E, Kiev 03127, Ukraine

DOI: https://doi.org/10.1090/S0094-9000-2014-00905-9
Keywords: Coupling theory, coupling method, maximal coupling, discrete Markov chains, stability of distributions
Received by editor(s): October 7, 2011
Published electronically: March 21, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society