Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Contributions to the theory of multivariate statistical analysis


Author: William G. Madow
Journal: Trans. Amer. Math. Soc. 44 (1938), 454-495
MSC: Primary 62H05; Secondary 62H10
DOI: https://doi.org/10.1090/S0002-9947-1938-1501977-0
MathSciNet review: 1501977
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. S. Bartlett, On the theory of statistical regression, Proceedings of the Royal Society of Edinburgh, vol. 53 (1933), pp. 260-283.
  • [2] M. S. Bartlett, The problem in statistics of testing several variances, Proceedings of the Cambridge Philosophical Society, vol. 30 (1934), pp. 164-169.
  • [3] M. S. Bartlett, The vector representation of a sample, Proceedings of the Cambridge Philosophical Society, vol. 30 (1934), pp. 327-340.
  • [4] M. S. Bartlett and J. Wishart, The generalized product moment distribution in a normal system, Proceedings of the Cambridge Philosophical Society, vol. 29 (1933), pp. 260-270.
  • [5] S. Bochner, Vorlesungen über Fouriersche Integrale, Akademische Verlagsgesellschaft, Leipzig, 1932.
  • [6] W. G. Cochran, The distribution of quadratic forms in a normal system, with applications to the analysis of covariance, Proceedings of the Cambridge Philosophical Society, vol. 30 (1934), pp. 178-191.
  • [7] H. Cramer, Random Variables and Probability Distributions, Cambridge Tracts in Mathematics and Mathematical Physics, no. 36, London, 1937.
  • [8] G. Darmois, Sur les lois de probabilité à estimation exhaustive, Comptes Rendus de l'Académie des Sciences, Paris, vol. 200 (1935), pp. 1265-1266.
  • [9] R. A. Fisher, On the mathematical foundations of theoretical statistics, Philosophical Transactions of the Royal Society of London, (A), vol. 222 (1921), pp. 309-368.
  • [10] R. A. Fisher, The influence of rainfall on the yield of wheat at Rothamstead, Philosophical Transactions of the Royal Society of London, (B), vol. 213 (1924), pp. 89-142.
  • [11] R. A. Fisher, On a distribution yielding the error functions of several well known statistics, Proceedings of the International Mathematical Congress, Toronto, 1924, pp. 805-812.
  • [12] R. A. Fisher, Applications of ``Student's'' distribution, Metron, vol. 5 (1926), pp. 90-104.
  • [13] R. A. Fisher, The general sampling distribution of the multiple correlation coefficient, Proceedings of the Royal Society of London, (A), vol. 121 (1928), pp. 654-673.
  • [14] R. A. Fisher, Tests of significance in harmonic analysis, Proceedings of the Royal Society of London, (A), vol. 125 (1929), pp. 54-60.
  • [15] R. A. Fisher, Two new properties of mathematical likelihood, Proceedings of the Royal Society of London, (A), vol. 144 (1934), pp. 285-307.
  • [16] R. A. Fisher, Statistical Methods for Research Workers, 6th edition. Oliver and Boyd, London, 1936.
  • [17] B. Greenstein, Periodogram analysis with special application to business failures in the United States, 1867-1932, Econometrica, vol. 3 (1935), pp. 170-198.
  • [18] H. Hotelling, The generalization of Student's ratio, Annals of Mathematical Statistics, vol. 2 (1931), pp. 170-198.
  • [19] H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, vol. 24 (1933), pp. 417-441, 498-520.
  • [20] H. Hotelling, Relations between two sets of variables, Biometrika, vol. 28 (1936), pp. 321-377.
  • [21] A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, vol. 2, no. 3.
  • [22] S. Kolodziejczyk, On an important class of statistical hypotheses, Biometrika, vol. 27 (1935), pp. 161-190.
  • [23] B. O. Koopman, On distributions admitting a sufficient statistic, Trans. Amer. Math. Soc. 39 (1936), no. 3, 399–409. MR 1501854, https://doi.org/10.1090/S0002-9947-1936-1501854-3
  • [24] S. Kullback, An application of characteristic functions to the distribution problem of statistics, Annals of Mathematical Statistics, vol. 5 (1934), pp. 264-307.
  • [25] W. G. Madow, Contributions to the theory of comparative statistical analysis. I Fundamental theorems of comparative analysis, Annals of Mathematical Statistics, vol. 8 (1937), pp. 159-176.
  • [26] J. Neyman, Su un teorema concernente le cosìdette statistische sufficiente, Giornale dell' Istituto Italiano degli Attuari, vol. 6 (1935), pp. 320-334.
  • [27] J. Neyman and E. S. Pearson, On the use and interpretation of certain test criteria for purposes of statistical inference, Biometrika, vol. 20$ ^{A}$ (1928), pp. 175-240, 264-294.
  • [28] J. Neyman and E. S. Pearson, Sufficient Statistics and Uniformly Most Powerful Tests, Statistical Research Memoirs, Cambridge University Press, London, vol. 1, 1936.
  • [29] E. S. Pearson and S. S. Wilks, Methods of statistical analysis appropriate for $ k$ samples of two variables, Biometrika, vol. 25 (1933), pp. 363-377.
  • [30] E. S. Pearson and J. Neyman, see [27] and [28].
  • [31] S. Saks, Theory of the Integral, 2d edition, Stechert, New York, 1937.
  • [32] H. W. Turnbull, The Theory of Determinants, Matrices, and Invariants, Blackie and Son, London, 1926.
  • [33] B. L. Welch, Some problems in the analysis of regression among $ k$ samples of two variables, Biometrika, vol. 27 (1935), pp. 145-160.
  • [34] S. S. Wilks, Certain generalizations in the analysis of variance, Biometrika, vol. 24 (1932), pp. 472-494.
  • [35] S.S. Wilks, The standard error of a tetrad in samples from a normal population of independent variables, Proceedings of the National Academy of Sciences, vol. 18 (1932), pp. 562-565.
  • [36] S. S. Wilks and E. S. Pearson, see [29].
  • [37] S. S. Wilks, Moment-generating operators for determinants of product moments in samples from a normal system, Ann. of Math. (2) 35 (1934), no. 2, 312–340. MR 1503165, https://doi.org/10.2307/1968435
  • [38] S. S. Wilks, On the independence of $ k$ sets of normally distributed statistical variables, Econometrika, vol. 3 (1935), pp. 309-326.
  • [39] John Wishart, Moment coefficients of the 𝑘-statistics in samples from a finite population, Biometrika 39 (1952), 1–13. MR 0050223, https://doi.org/10.1093/biomet/39.1-2.1
  • [40] J. Wishart, Sampling errors in the theory of two factors, British Journal of Psychology, vol. 19 (1928), pp. 32-52.
  • [41] J. Wishart and M. S. Bartlett, see [4].

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 62H05, 62H10

Retrieve articles in all journals with MSC: 62H05, 62H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1938-1501977-0
Article copyright: © Copyright 1938 American Mathematical Society