The theory of Boolean-like rings

Author:
Alfred L. Foster

Journal:
Trans. Amer. Math. Soc. **59** (1946), 166-187

MSC:
Primary 09.1X

MathSciNet review:
0015045

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**Alfred L. Foster,*The idempotent elements of a commutative ring form a Boolean algebra; ring-duality and transformation theory*, Duke Math. J.**12**(1945), 143–152. MR**0012264****[2]**Alfred L. Foster and B. A. Bernstein,*Symmetric approach to commutative rings, with duality theorem: Boolean duality as special case*, Duke Math. J.**11**(1944), 603–616. MR**0010545****[3]**M. H. Stone,*Postulates for Boolean Algebras and Generalized Boolean Algebras*, Amer. J. Math.**57**(1935), no. 4, 703–732. MR**1507106**, 10.2307/2371008**[4]**Alfred L. Foster and B. A. Bernstein,*A dual-symmetric definition of field*, Amer. J. Math.**67**(1945), 329–349. MR**0012275****[5]**B. L. van der Waerden,*Moderne Algebra*, Springer.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
09.1X

Retrieve articles in all journals with MSC: 09.1X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1946-0015045-5

Article copyright:
© Copyright 1946
American Mathematical Society