Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The theory of Boolean-like rings


Author: Alfred L. Foster
Journal: Trans. Amer. Math. Soc. 59 (1946), 166-187
MSC: Primary 09.1X
DOI: https://doi.org/10.1090/S0002-9947-1946-0015045-5
MathSciNet review: 0015045
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. L. Foster, The idempotent elements of a commutative ring form a Boolean algebra; ring duality and transformation theory, Duke Math. J. vol. 12 (1945) pp. 143-152. MR 0012264 (7:1c)
  • [2] A. L. Foster and B. A. Bernstein, Symmetric approach to commutative rings with duality theorem: Boolean duality as special case, Duke Math. J. vol. 11 (1944) pp. 603-616. MR 0010545 (6:34b)
  • [3] M. H. Stone, The theory of representations of Boolean algebras, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 37-11Postulates for Boolean algebras and generalized Boolean algebras, Amer. J. Math. vol. 57 (1935) pp. 703-732. MR 1507106
  • [4] A. L. Foster and B. A. Bernstein, A dual-symmetric definition of field, Amer. J. Math. vol. 67 (1945) pp. 329-349. MR 0012275 (7:3c)
  • [5] B. L. van der Waerden, Moderne Algebra, Springer.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 09.1X

Retrieve articles in all journals with MSC: 09.1X


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1946-0015045-5
Article copyright: © Copyright 1946 American Mathematical Society

American Mathematical Society