Degree of approximation to functions on a Jordan curve

Author:
J. L. Walsh

Journal:
Trans. Amer. Math. Soc. **73** (1952), 447-458

MSC:
Primary 30.0X

DOI:
https://doi.org/10.1090/S0002-9947-1952-0052505-8

MathSciNet review:
0052505

Full-text PDF

References | Similar Articles | Additional Information

**[1]**J. L. Walsh,*Interpolation and approximation by rational functions*, Amer. Math. Soc. Colloquium Publications, vol. 20, New York, 1935.**[2]**J. L. Walsh,*Polynomial expansions of functions defined by Cauchy’s integral*, J. Math. Pures Appl. (9)**31**(1952), 221–244. MR**0051919****[3]**J. L. Walsh,*Note on approximation by bounded analytic functions*, Proc. Nat. Acad. Sci. U. S. A.**37**(1951), 821–826. MR**0045206****[4]**J. L. Walsh and H. Margaret Elliott,*Polynomial approximation to harmonic and analytic functions: generalized continuity conditions*, Trans. Amer. Math. Soc.**68**(1950), 183–203. MR**0033921**, https://doi.org/10.1090/S0002-9947-1950-0033921-5**[5]**J. L. Walsh,*On degree of approximation on a Jordan curve to a function analytic interior to the curve by functions not necessarily analytic interior to the curve*, Bull. Amer. Math. Soc.**52**(1946), 449–453. MR**0016128**, https://doi.org/10.1090/S0002-9904-1946-08589-4**[6]**Jack D. Cowan (ed.),*Some mathematical questions in biology. III*, American Mathematical Society, Providence, R.I., 1972. Lectures on Mathematics in the Life Sciences, Vol. 4. MR**0323374****[7]**I. Edward Block,*The Plemelj theory for the class Λ* of functions*, Duke Math. J.**19**(1952), 367–378. MR**0049308**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30.0X

Retrieve articles in all journals with MSC: 30.0X

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1952-0052505-8

Article copyright:
© Copyright 1952
American Mathematical Society